WordCount

WordCount Example

WordCount example reads text files and counts how often words occur. The input is text files and the output is text files, each line of which contains a word and the count of how often it occured, separated by a tab.

Each mapper takes a line as input and breaks it into words. It then emits a key/value pair of the word and 1. Each reducer sums the counts for each word and emits a single key/value with the word and sum.

As an optimization, the reducer is also used as a combiner on the map outputs. This reduces the amount of data sent across the network by combining each word into a single record.

To run the example, the command syntax is
bin/hadoop jar hadoop-*-examples.jar wordcount [-m <#maps>] [-r <#reducers>] <in-dir> <out-dir>

All of the files in the input directory (called in-dir in the command line above) are read and the counts of words in the input are written to the output directory (called out-dir above). It is assumed that both inputs and outputs are stored in HDFS (see ImportantConcepts). If your input is not already in HDFS, but is rather in a local file system somewhere, you need to copy the data into HDFS using a command like this:

bin/hadoop dfs -mkdir <hdfs-dir>
bin/hadoop dfs -copyFromLocal <local-dir> <hdfs-dir>

As of version 0.17.2.1, you only need to run a command like this:
bin/hadoop dfs -copyFromLocal <local-dir> <hdfs-dir>

Word count supports generic options : see DevelopmentCommandLineOptions

Below is the standard wordcount example implemented in Java:

Toggle line numbers
   1 package org.myorg;
   2         
   3 import java.io.IOException;
   4 import java.util.*;
   5         
   6 import org.apache.hadoop.fs.Path;
   7 import org.apache.hadoop.conf.*;
   8 import org.apache.hadoop.io.*;
   9 import org.apache.hadoop.mapred.*;
  10 import org.apache.hadoop.util.*;
  11         
  12 public class WordCount {
  13         
  14  public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
  15     private final static IntWritable one = new IntWritable(1);
  16     private Text word = new Text();
  17         
  18     public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
  19         String line = value.toString();
  20         StringTokenizer tokenizer = new StringTokenizer(line);
  21         while (tokenizer.hasMoreTokens()) {
  22             word.set(tokenizer.nextToken());
  23             output.collect(word, one);
  24         }
  25     }
  26  } 
  27         
  28  public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
  29 
  30     public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
  31         int sum = 0;
  32         while (values.hasNext()) {
  33             sum += values.next().get();
  34         }
  35         output.collect(key, new IntWritable(sum));
  36     }
  37  }
  38         
  39  public static void main(String[] args) throws Exception {
  40     JobConf conf = new JobConf(WordCount.class);
  41     conf.setJobName("wordcount");
  42         
  43     conf.setOutputKeyClass(Text.class);
  44     conf.setOutputValueClass(IntWritable.class);
  45         
  46     conf.setMapperClass(Map.class);
  47     conf.setCombinerClass(Reduce.class);
  48     conf.setReducerClass(Reduce.class);
  49         
  50     conf.setInputFormat(TextInputFormat.class);
  51     conf.setOutputFormat(TextOutputFormat.class);
  52         
  53     FileInputFormat.setInputPaths(conf, new Path(args[0]));
  54     FileOutputFormat.setOutputPath(conf, new Path(args[1]));
  55         
  56     JobClient.runJob(conf);
  57  }
  58         
  59 }

last edited 2008-09-24 00:12:51 by SuzanneMatthews