SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 13, 163-179 {1983)

A Specification Schema for Indenting Programs

PRABHAKER MATETI*
Departinent of Computer Science, University of Melbourne, Parkville, Victoria, Australia

SUMMARY

A two level specification of the functional behaviour of a class of indenting programs for
Pascal is presented. The transformation that these programs perform on the input textis a
camposition of splitting input lines, altering the blank space between lexical tokens and
computing the margin required in front of each of the split lines. The high level specification
is given as a stylized Pascal grammar in Extended BNF. In contrast, the low level
specifications, which are operationally closer to a program, and which define how syn-
tactically invalid text is dealt with, require several mathematical functions that capture the
essence of these basic transformations. The specifications of an indenting program for Pascal
are then obtained as a further elaboration of these functions. Most indentation styles
appearing in the literature can be specified with precision using methods developed in this
paper. Our experience in this case study indicates that although specifications for real-life
programs can be given using simple mathematics, the effort required is still considerable.

KEy worps Functional specifications Correctness proofs Pretty-printing Pascal

PREFACE

The present paper is one of a triplet on an indenting program for Pascal. We
undertook this exercise with three objectives in mind:

1. The literature sadly lacks real-life programs whose correctness is established by
proof rather than by testing. On the other hand, those who have practised
proving correctness have been raising the hopes of the readers to such an extent
that a single mistake in a published proof gets the widest adverse publicity. We
hope that our indenting program and its specifications and proof will serve as
examples in this regard.

2. The practising programmer, we find, often uses the lowest level of formalism
whereas a student who has just been through correctness methods employs
formidable notation and an excess of formalism. The right level for a given
program escapes both. It is not easy to say what is a right level. This can only be
communicated through examples.

3. There is a myth that giving precise specifications for ‘real-life’ programs is often
not possible. We are quite willing to accept this as a definition of ‘real-life’
programs but not as a corcllary. Another myth is to equate precision with
formalism. We hope that these papers will serve as examples where sufficient
precision is attained with very little formalism.

Only the reader can tell how far we succeed in fulfilling our objectives.

_:P.:.'e-s-e_n-t":.!t;lrcss-. Department of Computer Engineering, Case Western Reserve University, Cleveland, OH 44106,
U.S5.A.

0038-0644/83/020163-17%01.70 Received 15 September 1980
© 1983 by John Wiley & Sons, Ltd.

L\

164 PRABHAKER MATETI

1. INTRODUCTION

That written material expected to be read by humans should be laid out with thought
and care is widely appreciated. Yet the layout of many computer programs is poor. To
make matters worse, programs written in modern programming languages have many
nested levels of control structures and declarations. While compilers for these
languages accept ‘free-format’ input and can distinguish the nesting regardless of how
the text input is laid out, most humans are yet to adapt themselves in this fashion.

Laying out the text of a program so that its structure is readily apparent has come to
be called ‘pretty-printing’. Many sets of rules for pretty-printing exist (e.g.
References 1-3). These rules range from such typewriting conventions as always
following a comma by a blank and flanking an equality sign by blanks to insisting that
reserved words such as goto appear only at the beginning of a line and never hidden
somewhere in the middle of a line. Much of the work in the layout of a program text is
routine once a set of systematic pretty-printing rules is chosen. In fact, several
programs that pretty-print the given input exist.

In this paper, we limit ourselves to programs written for Pascal, and use the less
pretentious word ‘indenting’ in preference to ‘pretty-printing’. We develop the basic
mathematical functions required to specify precisely the input-to-output trans-
formation performed by a class of indenting programs. The companion paper?® proves
the correctness of an indenting program meeting the specifications developed here,
and Reference 5 discusses global issues about the program.

The indentation scheme embodied in our specifications below has evolved over a
period of years accommodating and adapting the many schemes proposed in the
literature. The author finds it satisfactory but is aware of others who do not. The goal
of this paper is not to promote this scheme but to show that specification for such
programs can be developed with sufficient precision employing simple mathematical
notions. Section 2 discusses our expectations of indenting programs. Section 3
establishes notation. Section 4 gives the input-to-output transformation performed by
these programs using the syntax definition of Pascal. Section 5 specifies the
transformation independently of this syntax definition. Section 6 shows that if the
input file contains a legal construct of Pascal then the specifications of Sections 4 and 3
are equivalent.

2. WHAT SHOULD INDENTING PROGRAMS DO?

The specifications of a program are simply our requirements and expectations of it but
stated precisely without ambiguity. We ignore certain specifications of a program such
as that its length be so much, or that it be written in language X without gotos,
Instead we will concentrate only on the relationship between the input and output of
indenting programs. Such specifications are called functional specifications.®

We list some of our expectations of indenting programs below.

1. The most obvious and yet oft-forgotten requirement is that the output of an
indenting program should be ‘lexically equivalent’ to the text input given.
Should indenting programs accept only syntactically correct text? No. We
believe that indenting programs must accept any text input; if the input happens
to be a syntactically correct program, we then expect its output to be properly
indented. And if the input is not syntactically correct, the output text should be
indented as reasonably as possible. A notion of reasonableness underlies our low

=

INDENTING PROGRAMS 165

level specifications. The main reasons for insisting that indenting programs also
accept ‘incorrect’ text are:
(i) Syntactic checking unnecessarily overburdens indenting programs.

(ii) Properly indented text helps us quickly identify syntax errors.

(iii) T'here are many variations of Pascal language in existence.

In fact, only minor modifications should be sufficient to produce an indenting
program for other Pascal-like languages.

2. The output from an indenting program should appear ‘properly indented’. This
notion is made precise in later sections. (The particular indentation scheme that
we suggest may not appear 'pretty’ to some, but we remind that our interest in
the scheme here is only as a concrete running example,) Proper indentation
involves essentially three independent activities:

(i) Each line should be started at the appropriate left margin.

(1) Certain constructs of the language should not be hidden in the middle of a
line. For instance, it appears important that reserved words such as
while, repeat, procedure always appear at the beginning of a line and
are never embedded in a line. Reading many Pascal programs convinced
us that no line of a listing should contain more than one statement.
Multiple assignments on one input line should be split up.

_(ili} Adjusting the inter-word blank spacing so that it is visually appealing.
Subjective preferences and special circumstances abound in this matter,
and we specify here that this spacing be left unaltered except for splitting.

We believe that each input line should generate an integral number of output
lines. Cambining two or more input lines and then splitting them up is often
unsatisfactory and leads to complicated ‘control language’ to specify (in the
program being indented) how the lines are to be split.

3. We also believe that indenting programs which produce output always different
from their inputs are undesirable. More specifically, if we feed the indented text
back to the indenting program as input, the output must be identical to the input.
This characteristic of indenting programs is important from a psychological
point of view,

It should be borne in mind that no matter how well we specify the input to output
transformation whether an alleged indenting program should indeed be called an
indenting program, and for what language, has to be judged by subjective con-
siderations. For instance, our definition of lexical analysis is sure to startle some.

Figure 1 gives an example function indented according to our specifications. There
are many inputs which produce that indented output. For the sake of concreteness,
assume that the input was the text of the Figure shown, but with all leading white
space in each line deleted. The reader is encouraged to compute the various functions
and predicates that we define below on this input.

3. NOTATION

We denote by ‘b, \t, \n, ‘e the characters blank, tab, end-of-line and end-of-file
marker, respectively. The first three of these characters are referred to as white
characters; we denote by %, any one of these. For simplicity in this paper, we replace
each tab by a fixed number, say 8, of blanks and assume from now on that tabs do not
occur. By white space we mean any (possibly mixed) string of white characters. A line is

166

PRABHAKER MATETI

function nexttoken : token;
var
i, j, d : ex;
: token:
procedure dimtoken;
begin
end:
procedure stdtoken;
var
ctemp : packed array [1..tknlMAX] of char:
k T oexs
begin
end;

procedure gettoken;
{* Changes the following global vars :

. nextex of main prog
o tox of main prog
. jag of nexttoken
*)
var

i:ex;

d : (1..2):
begin

i := nextex;
while ec[i] in WHITECHARS do i := i + 1;

Jr:=4i;
while not (efj] in DELIMITERS) do
J =3+ 1
if i1 = j then begin
dlmtoken;
Ji:=Rirstd
end
else
stdtoken;

end (¥ gettoken %);

begin

tox = nextex - i;

while nextex > lastex do
begin

end;

gettoken:
nexttoken := t;
end;

Figure 1. An example of an indented function

INDENTING PROGRAMS 167

a string, not containing end-of-lines or end-of-file markers, followed by the end-of-
line character. A file is a sequence of lines followed by the pseudo-line containing
exactly the single character 'e.

We deal with several kinds of sequences. We adopt the convention that any single
object is also a sequence of length one consisting of that object. The concatenations of
strings, segment sequences and token sequences are denoted by ., ! and o re-
spectively. Note that sequences of lines, or of segments are also strings. We use regular
expression notation when requiring sequences of a certain pattern. Thus, x ** & stands
for the sequence x repeated k times, and x* stands for x ** &, for some 22 0. Unless
explicitly stated otherwise, by string we mean a string of characters free of ‘e. We
show strings enclosed in double-quotes. A string x is a prefix of z if = = x! y for some y;
x is a suffix of = if 2 = y,|«, for some y. The words prefix and suffix have analogous
meaning when referring to other kinds of sequences. Empty string, token sequence

and segment sequences are denoted respectively by " "', 00 and Oss.

The specifications require many predicates and mathematical functions. We use
names with upper-case letters in them for these. In the definitions read ‘::=" as ‘is
defined as’.

4, HIGH LEVEL SPECIFICATIONS

In this section we specify the layout of programs using the Extended BNF grammar
of Pascal. As the lexical structure of Pascal is left undefined there we expect the reader
to use his own intuitive understanding of how a string 1s mapped to a token sequence,
for the time being. We also ignore, until the next section, the presence of comments, as
does the above syntax definition. We also make minor changes to the grammar. For
instance, all occurrences of terminal strings are replaced by non-terminals whose
names are composed of the letters nt followed by the name of the token (in upper case).
Thus the nonterminal #ntREPEAT produces w, ''repeat’’, where w stands for a (possibly
empty) white space

Given a string s with no white space suffix, s = 5,155 ...:5,, and the corresponding
production rule n = n ny...m, such that n =*s, n; »*s;, we assume that the 5; do not
have white space suffix, However, the s; may have a prefix white space. This is
significant as the white space prefix of each line is, so to speak, all that matters.

We say that a given string s corresponding to a non-terminal » is ‘properly laid out’
starting at margin m if PLOT(n, s, m) = true. The definition of pPLOT is given
compactly in a syntax-directed way in Figure 2. Each production acts as a template for
a conjunction of NEWL and PLOT predicates, which are defined below; substituting
actual strings for the non-terminals gives a logical conjunction which can then be
evaluated. Each line in the diagram contains one terminal (which we show by the
appropriate token) or one non-terminal (and possibly a metabracket) whose inden-
tation from the reference vertical gives the ‘ruling margin’ increment for it. The
presence of a NEWL predicate is indicated by a’, n character to the left of the reference
vertical.

To conserve space, we have omitted from Figure 2 all productions whose
specifications are of the form

7

168

PRABHAKER MATETI

program =
program heading
block

program heading =

\n |ntPROGRAM

identifier

ntLPAREN
ident list

ntRPAREN

ntSEMICOLON

label declaration part =
\n |ntLABEL

label

{ntCOMMA

label)
ntSEMICOLON

const definition part =

\n |ntCONST

constant definition
ntSEMICOLON

\n {eonstant definition
ntSEMICOLON]

type definition part =
\n |ntTYPE

type definition
nt SEMICOLCN

\n {type definition
nt SEMICOLON]

var declaration part =
\n |ntVAR

var declaration
nt SEMICOLON

\n {var declaration
ntSEMICOLON}

var declaration =
identifier
{nt COMMA
identifier}
nt COLON

type

procedure declaration =
procedure heading
block

procedure heading =

\n |ntPROCEDURE
identifier
[formal parameter 1list]
nt SEMICOLON

function declaration =
function heading
block

function heading =
\n |ntFUNCTION
identifier
[formal parameter list]
nt.COLON
type identifier
nt SEMICOLON

formal parameter list =
ntLPAREN
formal parameter section
{ntSEMICOLON
\n formal parameter sectionl
ntRPAREN

formal parameter section =
[ntVAR |
ntFUNCTION]

ident 1list

nt COLON

type identifier §

nt PROCEDURE

ident 1list

actual parameter list =
nt LPAREN
expression
{nt COMMA
expression}
nt RPAREN

factor =

ntLPAREN
expression

ntRPAREN

compound statement =
ntBEGIN
statement

{nt SEMICOLON

\n |statement}

ntEND

. ocontd

INDENTING PROGRAMS

| statement =
| (label
nt COLON
unlabelled statement
unlabelled statement

if statement =

\n |ntIF

expression

ntTHEN
statement

\n |[ntELSE

statement]

case statement =
\n |ntCASE
expression
ntOF
case
{ntSEMICOLON
\n case}
ntEND

case =

[case label 1ist

nt COLON
statement]

while statement =
\n |ntWHILE
expression
ntDO
statement

repeat statement =
\n |ntREPEAT
statement
{ntSEMICOLON
\n statement)}
\n |ntUNTIL
expression

for statement =

\n [ntFOR

identifier

ntASSIGN

for list

ntDo
statement

with statement =
\n |ntWITH
variable
{nt COMMA
variable}
ntDO
H statement

goto statement =
\n |ntGOTO
label

scalar type =
ntLPAREN

ident list
ntRPAREN

record type =
ntRECORD
! field 1ist
{ntEND

record section =

[ident 1ist

nt COLON
typel

variant part =
\n |ntCASE
(identifier
ntCOLON
type identifier
ntoF |
type identifier
ntoF)
variant
[ntSEMICOLON
\n variant}

variant =
case label 1list
nt COLON
ntLPAREN
field 1ist
ntRPAREN

Figure 2. High level specifications of our indenting scheme

170 PRABHAKER MATETI

n= e.g., block =
", \[label declaration part]
n,y [constant definition part)
(type definition part]
i[var declaration part]
\procedure and function declaration part
"y compound statement

where all the #; are right next to the references vertical and have no \n character
appearing to its left.

4.1. The predicate properly-laid-out

For example, we say that a string named rptst produced by the non-terminal repeat
statement 1s properly laid out at m if (1) the reserved word repeat is the first word on
that line starting at a margin of m, (2) the statements of the loop body obey the rules of
Figure 2 recursively, (3) the reserved word unt:l is the first word on that line starting at
margin m and (4) the expression after unti/ obeys the rules recursively. More formally,
if the instance rptst we are considering had two statements, say st1 and s¢2, in its body
and exp as its expression, and w1, w2 are white spaces, i.e.

rptst = wl “repeat’ stl}'";" [se2 w2 "until" | exp
then the logical conjunction given by the diagram is:

PLOT(repeat statement, rptst, m) =
PLOT(n¢REPEAT, w1 '"repeat’’, m) & NEwL(z21 | " repeat’)
& pLoT(statement, st1, m+uvor)
& pLOT{nysEMICOLON, "';", m - UO1)
& PLOT(statement, 512, m+vo1) & NEWL(st2)
& proT(ntuNTIL, w2 "until", m) & NEWL(w2 | "until")

& rpLoT(expression, exp, m+ uoi)

where vo1 stands for the unit of indentation. We now define PLOT and NEWL more
precisely.

Definition of PLOT
PLOT is a predicate on triplets consisting of a non-terminal, a string and a
margin width.

1. PLOT(n, s|c, m) ::= pLOT(n, s, m), where ¢ is either 2, or ‘e. Thus we assume
below that s has no trailing white space,

2. pLOT(n, 5, m) ::= false, if » does not produce s. Thus we further assume below
that n —%*g,

3. pLoT(empty, "' "', m) :: = true, for all m.

4. pPLOT(Z, 5, m) ::=18AT(s, m), where ¢ is a (non-terminal) token.

5. Let n=mn;n,...m be a syntax rule of the language. Let s,5,,5,,...,5 be

corresponding strings generated from the non-terminals # and the n;. Then

INDENTING PROGRAMS 171

PLOT(n, s, m) 1=
PLOT(ny, 5y, m)
& PLOT(n,, m+RMI(n,, 15))
& ..
& PLOT(my, Sy, m~+RMI(n, 1y ... 0y, 1))
& NEWL(s;) & NEWL(s;;) & ... & NEWL(s;,)

where RMI(#, ... n;_ 1, 1)) is the ruling margin increment for the n; as shown n
Figure 2 for that production rule and only the nonterminals n;y, ;5 ...n;, has
the '# to the left of the reference vertical.
Thus, the above pLOT(repeat statement, rpstst, m} would be true for m =0, for
example, if st1 and st2 were empty strings, wl and w2 were equal to '\ n and exp did not
contain '\ n.

Definition of 18aT

1SAT(s, m) ::= true iff either s =% *"n,"b**m c y, for some string y and non-
white character ¢, or s does not contain ' n.

If s does have a ' n, then 1SaT(s, m) will be true iff the left-most non-white character
of s is exactly m blanks away from the preceding '\n.

Definition of NEWL
NEWL(s) ::= true iff s = % *|\n!x, for some string x.

That is, NEwWL(s) is true iff s has a ‘» preceding which there are no non-white
characters.

4.2. The indented file

We say that a string s is lexically equivalent to ¢ if both produce the same sequence
of tokens. More formally, s and ¢ are lexically equivalent if by replacing the inter-token
white space by a single blank, and by deleting any white space prefix/suffix, if any, the
resulting strings s1 and ¢1 become equal. (See also the next section.)

Given a file 71 (the input) an indenting program should produce file Fu such that

1. for each 7, 1 £/<number of lines in Fi, there exists a u, 1 <u < number of lines
in Fu, such that FI[1 .. {] and Fu[l .. u] are lexically equivalent where ¥[1.. 1]
stands for the first # lines of file F,

2. pLoT(nt, \n Fu, 0) = true, and

3. no file with fewer lines than are in Fu satisfies the above,

whenever FI is a sentence corresponding to a non-terminal nt of Pascal grammar.
This is the specification of indenting programs that appeals to us. Part (3) guarantees
that input lines are not split up unnecessarily. In part (2), a'n is prefixed to FU so as to
treat the end of line character as a ‘new line’ character. Without this “#, a NEWL
predicate might be false even though the first token of the very first line is at the
correct margin. Note that the behaviour of the indenting program is unspecified when
F1 does not contain a legal construct of Pascal. Note also that part (1) of the
specification tmplies that Fu will have at least as many lines as in F1. It also rules out
recombination of input lines and then splitting them up into cutput lines.

172 PRABHAKER MATETI

5. LOW LEVEL SPECIFICATIONS

We now develop a set of specifications that appear independent of Pascal grammar.
Whereas the previous section left undefined the behaviour of indenting programs
when invalid constructs of Pascal are given as input, this section specifies what
transformation is to be done for an arbitrary input string, and hence an arbitrary
sequence of tokens. This latter transformation is designed to coincide with that given
above for all syntactically valid constructs of Pascal. An outline of a proof of this fact is
given in the next section.

5.1. Lexical analysis

Lexical analysis is a process that breaks up strings into sequences of ‘words’, more
widely known as tokens. We say -a character string w is a word if TkN(w) is not
undefined, where TKN is a partial function that maps character strings to tokens as
elaborated below.

Definition of TKN
For a given string w, TKN(w) is defined as ¢ if there is a pair {(w,?) in one of the
following sets; otherwise TKN(w) is undefined.
1. Let w be free of delimiters, namely the following characters: blank, tab, end-of-
line, end-of-file, parentheses, braces, semicolon, colon, asterisk, quote and
period. (Other conventiconal delimiters do not concern us,)

{ ("'procedure” , PROCEDURE),
{""function" , FUNCTION),
{"'program" , PROGRAM),
{""forward" , FORWARD)
{"'repeat" , REPEAT),
("'record" , RECORD),
("'extern" , EXTERN),
'while" , WHILE},
Muntil" , UNTIL),
{"'label" , LABEL),
{"'const" , CONST),

("' begin’' , BEGINY,
g"wz'th' . W[TH)),
“type" , TYPE),
(""then" , THEN,
{"'goto"’ , GOTO),
{""else" , ELSE),
"case" , CASEy,
“uar' , VAR,
{"for" , FOR),
"end" , END),
of') OF),
"do" , DO,
{other w , ORDINARY) }

INDENTING PROGRAMS 173

2. Let w contain delimiters.

{ <", semicoLOND,
et , QUOTE),
(e , COLOND,
S . LPAREN),
<y , RPAREN),
¢t , COMBGN),
S , COMEND),
(s , ORDINARY),
- 1 , ORDINARY),
{\e , ENDFILE),
St , COMBGN),
(AR , COMEND),
{"u=", ASSIGN) }

Note the obvious fact that any string consisting of exactly one non-white character is a
token.

The essence of lexical analysis is captured in LEX which produces the token sequence
of z in the context of a token sequence T already produced. Recall that 00 denotes the
empty token sequence, and o denotes concatenation of token sequences.

Definition of LEX

1. Lex(T," ") ::=00.

2. LEX(T, % ¥) 1= LEX(T, ¥).

3. Let = be free of leading white space. Then LEX(T, 2) ::= toLEX(T 0 ¢, x), where
z = w,x, and w is the longest prefix of = such that TKN(w) is defined. The token ¢
is TKN(z) unless (i) TKN(z)# COMEND and T = s 0 COMBGN 0 ORDINARY *, or (ii)
TKN(1v) # QUOTE and T = S 0 QUOTE o ORDINARY ¥, for some s free of unmatched
QUOTES. In the latter two cases, { = ORDINARY.

Definition of TKNSEQ
TKNSEQ(z) :: = LEX(00, =).

Since syntactically correct Pascal programs have one of the delimiters immediately
following reserved words, we do not risk non-recognition of such words by ignoring
other conventional delimiters {such as operators). Lexical analysis performed by a
typical Pascal compiler otherwise matches with LEX except when dealing with
comments and strings. In compilers, comments are simply swallowed and the strings
are returned as tokens, For our purpose here,, however, the layout of comments is
important. It would seem logical then to split a comment into three tokens, namely,
COMBGN, the comment contained, followed by coMEND. Since comments can span
several lines, this decision would complicate the definitions of functions given in
subsequent sections. Thus, we define LEX(T,) based on the longest prefix of z thatis a
word, and change the token to ORDINARY if T has an unmatched COMBGN or QUOTE.
For example, the string "(*(*)" is broken into words as ""(*"|"(*"!")" giving the
token sequence T1oT3 is a reduced token sequence of T10T2 T3 if T2 is the token
“doesn''t it'"" is tokenized as "''"'|“doesn™ " e e . Note, however,
that our line splitting rules do not split a Pascal string that was contained in one source

174 PRABHAKER MATETI

line. Good style for visual appeal demand that reserved words and comments be
flanked by white spaces and we do not see the need to rectify these ‘anomalies’.

5.2. Reduced token sequences

We introduce the notion of ‘reduced’ token sequences which makes it easy to define
the functions that give the left margin width of output lines. Intuitively speaking, a
token sequence T1a T3 is a reduced token sequence of T1oT20 73] if T2 is the token
sequence of a syntactically ‘sensible’ Pascal statement. One might insist that T2
correspond to a syntactically correct statement. This, we believe, is overburdening the
indenting programs; guaranteeing syntactic correctness is the function of a compiler,
not indenting programs. What is syntactically sensible is made clear in the way the
mathematical function RED maps a given token sequence to its reduction.

The p, Q, R, s and T below denote token sequences, and s and ¢ denote single tokens.
Expressions of the kind ““if T=RoDECLos for some R and s’ are abbreviated as ‘if
T = Ro DECL 0 8’. The special tokens DECL and PF are devised for the purposes of the reD
function below and do not have corresponding words.

Definition of RED (see notes below)

1. Rep(T0¢) ::= RED(RED(T) 0 £)

Thus we assume below that the sequence denoted by T is not reducible any
further.

2. Let ! =PROCEDURE, FUNCTION or PROGRAM. Then RED(To!) ::= R0 DECL 0 FF,
where R=5 if T=soDecL, R=T If T does not end with either DECL or
LPAREN; ::= T, if T does end with LPAREN,

3. Lett = LABEL, CONST, TYPE or VAR. Then Rep(T 0 ¢} ::= rRo bEcL, where R = 5 if
T = 50 DECL, R = T if T does not end with either DECL or LPAREN; 1= T, if T does
end with LPAREN.

4, Let ¢t = FORWARD, or EXTERN. Then ReD(rot)::=s, if T=S0PF; =T,
otherwise.

5. RED(T 0 BEGIN) ::= 50 BEGIN, if T=50PF, or if T=soPFoDECL; ::= T 0 BEGIN,
otherwise.

6. Let ¢ = RECORD, LPAREN, REPEAT, CASE, DO, THEN or COLON. Then
RED{Tot) ::=Tol.

7. RED(T 0 OF) ::= $ 0 CASE if T = S0 CASE0 COLON; :: = T, otherwise.

8. Let the pair {t,s) be one of (RPAREN, LPAREN), {UNTIL,REPEAT). Then
RED(To?) ::=R, if T=Resos where s does not have any tokens s; ::= 00,
otherwise.

9. RED(T 0 END) ::= R, if T =R o RECORD o5 where 5 is free of RECORDs; ::=P, if T is

free of RECORDs and T = Pos0Q where s is either a BEGIN, or a cASE and Q does
not have any of these tokens; :: = 00, otherwise.

10. RED(T © ELSE) :: = ROELSE, if T = Ro THEN ¢§ where § is free of THENS; ::= ELSE,
otherwise,

11. RED(T 0 SEMICOLON) ::= Ros, if T = Rosos where s is any token but THEN, ELSE,
DO, or COLON and s is a sequence of these tokens only; :: = 00, otherwise.

12. rep(To t)::= T, for any ¢ not covered above.
The many cases in the definition reflect the syntax of the language, It should be
clear that many illegal Pascal constructs would result in valid reduced sequences. As

INDENTING PROGRAMS 175

mentioned before, syntax validation is not in the domain of indenting programs we are
considering.

Cases 2, 3, 4 and 5 would be simpler if Pascal had a different syntax. The special
token pecL indicates that declarations (of labels, constants, types, variables and
procedure/functions) are due next, If the last token of T is LPAREN, which can arise in a
syntactically correct program only inside the parameter list, the tokens vag,
PROCEDURE and FUNCTION have no effect, The declarations end when a BEGIN is
encountered; this is shown in case 5. Case 4 arises because FORWARD and EXTERN are
not reserved words. They have the special meaning only when they appear im-
mediately following the procedure headline.

Case 7 arises because of variant records with tag fields. In our specification coLoN
indents and it is, in this case, terminated by the oF.

5.3. Line splitting

Each split up part of a line is called a segment. As we shall see, there is a one-to-one
correspondence between input segments and output lines. These two are in fact
identical but for the prefix and suffix white spaces.

The function FIRSTSEG maps non-white prefixes of a line to its first segment, using
the sets Lo, and Lc. The function SEGSEQ maps arbitrary strings to segment sequences.
The set Lo contains all (line opening) tokens whose corresponding words should
always appear as the first non-white string in an output line. Similarly, the set Lc
contains all tokens which always close an output line but allow any immediately
following comments. Thus the occurrence of a token from Lo in the middle of an input
line will split it just to the left of the token. The sets LO, LC are chosen to match the
specifications of Figure 2.

L0 ::= {PROCEDURE, FUNCTION, PROGRAM, LABEL, CONST, TYPE, VAR,
WHILE, REPEAT, UNTIL, IF, ELSE, CASE, GOTO}
LC :: = {SEMICOLON}

Intuitively, the segmentation of strings as produced by secstEQ can be explained as
follows. Place imaginary markers as follows: (1) before the very first and after the very
last characters of the string, (2) to the immediate right of every ', (3) to the
immediate left of a token belonging to Lo, and (4) to the immediate right of a token
belonging to Lc but skipping over comments following it. The strings thus enclosed
between pairs of consecutive markers are segments. The functions FIRSTSEG and
SEGSEQ imitate this process in a non-operational way.

Recall that we denote by 0Oss, the empty sequence of segments, and by !
concatenation of segment sequences,

Definition of FIRSTSEG

Let w be a prefix of a line, and let @ = LEX(T,).

1. Suppose /c 0 COMBGN o ORDINARY* is a suffix of T, where /c stands for a token from
Lc. Then FIRSTSEG(T,2) ::= 1, if Q does not contain COMEND; otherwise
FIRSTSEG(T,w) ::=x, where x is the longest prefix of w such that
LEX(T,) = ORDINARY* 0 COMEND 0 (COMBGN 0 ORDINARY* 0 COMEND)*.

2, Suppose Ic o COMBGN 0 ORDINARY* is not a suffix of T. Then let x be the longest
prefix of w such that LEX(T, x) does not contain (i) any token from Lo except as its
first token, or (ii) the subsequence /co(COMBGN o ORDINARY* 0 COMEND)* 0gq,
where ¢# comBeN. Then FIRSTSEG(T, w) = .

176 PRABHAKER MATETI

The first segment function FIRSTSEG may be more complex for other indentation
schemes. For instance, if we had required that the BEGIN of the code body of a
procedure start on a new line, but other BEGINs need not, decomposing an input line
into segments can no longer be done on the basis of a set like Lo.

Definition of SEGSEQ
Let = be a sequence of lines, and w a prefix of a line.
1. seGseQ('' ') ::= Oss.
2. SEGSEQ(z w) ::= sEGSEQ(2) ! w, if w is all white;
SEGSEQ(z w) :: = SEGSEQ(z) ! ps(z, w), otherwise.
3. ps(z, w) ;1= 0ss, if w is all white. Otherwise, ps(z,w) ::= u!Ds(z,u, v) where
u = FIRSTSEG(TKNSEQ(z), w), and w = u, v.
As an example, consider the following string, z, where the end of lines are shown
explicitly.
"if b1 then (* /oop *) while 52 do begin"
" x = flx); (*el®) {invariant} g(x)"
"end; (* of while and if *)"

The segments of SEGSEQ(2) are given below.
"if 51 then (*loop*)"

“while b2 do begin "|\»

n " \\n

" x = f(x); (*cl *) {invariant}"
||g(x)|| : \\Iﬂ

"end; (* of while and if *)"

//“/-

®ax

rm A e b b

5.4. Indentation

Most often the indentation (i.e. the width of the left margin) of a given output line
depends on the indentation of the previous line and on the reserved words occurring in
it. On rarer occasions, the indentation depends also on the reserved words appearing
in that line itself. An example of this is the “until”’. NMG(T) gives the margin the next
line should have if the last token of T corresponds to the last word of the current line;
cMG(T) gives the margin the current line should have if the last token of T corresponds
to the first word of the current line. The function MG gives the actual margin of each
output line.

Defimiion of NmG

1. NmMG(00) ::= 0.

2. NMG(T) ::= NMG(RED(T)). Thus we assume below that the argument of NMG is
reduced.

3. Let ¢t = pF, or BEGIN. Then NMG(To ¢t) :: = NMG(T).

4. Let ¢t = DECL, RECORD, LPAREN, REPEAT, DO, CASE, THEN, ELSE or COLON. Then
NMG(To {) ::= NMG(T)+ UoOI.

INDENTING PROGRAMS 177

Definition of cmc
1. cmG(00) ::= 0.

2. Let t = pF, pEcL or ELSE. Then cMG(T o t) :: = NMG(T o ¢) —UOI.

3. Let ¢=RECORD, LPAREN, REPEAT, DO, CASE, THEN or cOLON. Then
cMc(Tot) 1= NMG(T).

4. For all ¢t not covered above, cMG(To t) ::= NMG(T o t).

It follows from the above that cMG(T) = cMG(RED(T)).

Definition of ma

1. mg(0ss) ::= 0.

2. mG(=z!x) :1= cmG(T 0 t), where ¢ is the first token of LEX(T, x), and T = TKNSEQ(z).
Note that MG maps segment sequences to margins in contrast to NMG and cMc which
map token sequences to margins.

5.5. Final specification

Let zii\¢e be the input file to indenting program, and let zo be the corresponding
cutput file of an indenting program, Then

30 = INDENT(21)!'\e

is the relation between them, where INDENT(z?) ::= IND(SEGSEQ(2{)), and IND is given
below.

Defintion of 18D

IND maps segment sequences to sequences of lines. Let z be a sequence of segments,
and x a segment.
1. 1ND(0Oss) :: =" ", the empty string.
2. IND(z!x) ::=IND(z):\b** MG(z ! x)| psTRIM(x) \n, where psTRIM(x) trims x by
removing all its prefix and suffix white space.
Note that pstriM(ith segment of input file) = psTRiM(ith output line).

6. THE EQUIVALENCE OF THE TWO SPECIFICATIONS

The low level specifications coincide with the high level specifications in the following
sense: Let zi|\e be the text input to an indenting program satisfying our low level
specifications. Clearly its output zo = INDENT(zi):'e. Then we say that the two
specifications are coincident if pLOT(nt, \n|zo0,0) = true, whenever nt »*zi. Note that
if 27 were not a valid construct, pLoT(nt, \n z0,0) would be false for all nt. As
Figure 2 completely ignores comments, PLOT does not say how comments should be
laid out, and we therefore give INDENT complete freedom in this regard.

A proof that the two specifications are coincident proceeds by induction on the
syntactic structure of the input z7. As the base step, we show that if 27 can be generated
by one application of a production rule then zo = INDENT(2i) would satisfy the high
level specifications. If, for 1<j<k, zu;= INDENT(zi}), and N =N,N,...N, is a
production of Pascal grammar such that N; —* zi}, then the induction hypothesis is
that PLOT(N;, \n| zu 11 0) = true. We need to show that PLOT(N, \#| 20, 0) = true, where
20 = INDENT(z{) and zi = zi, | 2i5|...| 2i,.

178 PRABHAKER MATETI

Recall that we replaced terminal symbols appearing in the right-hand side of pro-
ductions by their token names and considered the latter as non-terminals, Thus any
zi that can be generated in one application can contain only one token and INDENT(z1)
contains no blank space in front of this token; thus pLOT(t, \n|INDENT(zi{), 0)
holds for some appropriate token ¢.

For the inductive step, note that zo = INDENT(2/) can be divided such that
T0 = 20203 ...| 20, NO zo; contains white space suffix, and N; —* 20;. Further note
that the zi;, zu; and zo; are all lexically equivalent. Since ZU; = INDENT(21}), zo;
possibly differs from zu; only in the width of the margin of each line and by containing
an extra \z in the prefix of zo. The rest of the proof of this step follows from these
observations and is simple but tedious requiring case analyses for each non-terminal N
of the grammar. Here we present two such cases—one for the repeat statement and
another for the procedure declaration.

Case N = repeat statement

Clearly TKNSEQ(20,) = REPEAT and TKNSEQ(zo0,_,) = UNTIL. Also, for 1<j<k—1,
zo;must equal ¢, (zu; with the margin of each line of zu; increased by voi blanks). Here
the string ¢ is either empty, or is '# depending on the segment sequence SEGSEQ(zi).
If a segment boundary fell between zi;_, and sy, and if zi;_ did not end with a \n,
then ¢ = \n, else ¢ =""". From the definition of secseq, it follows that a segment
boundary falls between z,_, and zi; either because 2i;_, terminated in a \, or in a
token from Lc followed by (portions of) comments, or because zi; begins a token
from Lo. Since Lo and LCc were chosen so as to make NEWL predicates true,
PLOT(repeat statement, ' n, zi, 0) must be true.

Case N = procedure declaration

We shall make further assumptions below for the sake of simplicity in this
illustration. We have that TKNSEQ(z0,) = PROCEDURE, TKNSEQ(Z0,) = ORDINARY (the
corresponding word being the name of the procedure), TKNSEQ{z04) = SEMICOLON,
assuming that the procedure heading has no parameters, and TKNSEQ(z0,) = END.
Further assuming that the procedure has only variable declaration part, we have
TKNSEQ(z0,) = VAR. Let 20s,...,z0,_, correspond to this declaration such that
TKNSEQ(Z0,) = SEMICOLON, TKNSEQ(%0,+) = BEGIN. Clearly then, z0,,,...,20,_, cor-
respond to the code body of the procedure. Note that the value of NMG() will be 2*uo1
starting from zos until zo,, both inclusive. After zo,, , it becomes vor and remains at
least uol until zo,. As in the previous case, we see that the code body and the variable
declaration and hence the procedure declaration thus meet the high level
specifications.

7. CONCLUDING REMARKS

This section contains some remarks based on personal experience with this case study
in specifying the behaviour of a medium sized program. I wrote the first version of an
indenting program in late 1978 mainly as a reaction to the very long, slow and often
clumsy indenting programs that were known to me at that time. A year later, I needed
a class-room example of a real life program whose specification and proof are given
sufficiently rigorously but with as little formalism as possible.

INDENTING FROGRAMS 179

I began writing these specifications believing that it would take no more than 10
hours. I now estimate that about 150 hours were spent, over 9 months, in choosing the
style of presentation, discovering the required functions and specifying the behaviour
of the program. (The time spent in writing this paper is not included in the estimate.)
In contrast, the original program was designed, written and tested in a total of 30
hours. Two revised versions of the program, eliminating many ‘minor bugs’ in the
original, were written during the development of the specifications. A correctness
proof of the last version appears in a companion paper.* I estimate that the two
revisions were done in 20 hours. Thus in my experience, the effort required in
specifying a program [thought I understood well was 3 to 4 times more than that
required in designing and writing it. I believe that this factor would have been
considerably higher if I had less training in this field.

One wonders if the low level specifications could have been written without a
certain program in mind, or if they are needed at all. I did have a certain program in
mind, and perhaps some of the inelegance is due to this fact. However, writing down
these specifications exhibited the subtle errors and inelegant ways of the program that
escaped my attention before. In contrast, the writing of high level specifications
helped only to explain to others how this program indents. It was important to write
the low level specifications because these defined how invalid input would be dealt
with. Indeed, half the correctness proof of the indenting program consist of showing
that low level spectifications coincide with high level specifications.

It is not unfair to say that few practising programmers would be comfortable with
the level of formalism used here. While there is certainly scope for improving the
notations used in the paper, I believe there will be significant loss of precision with any
further decrease in the level of formalism and rigour. The complexity of our
specifications, however, truly reflects the complexity of any program meeting them.

This experience has been both delightful and frustrating, at times. I recommend
that evervone who writes programs conduct similar experiments as often as possible.
As such experimenters are well aware, specifications can and often do contain bugs
just as programs do.

REFERENCES

i. P. Grogone, ‘On layout, identifers and semicolons in Pascal programs’, SIGPLAN Notices, 14(4),
3540 (1979).

. H. Ledgard, A. Singer and]. Hueras, ‘A basis for executing Pascal programmers’, SIGPLAN
Natices, 12(7), 101-105 (1977).

3. A. Sale, ‘Stylistics in languages with compound statements’, The Australian Computer Journal, 10(2),

58-39 (1978).

4. P. Mateti and J. Jaffar, 'A correctness proof of an indenting program’ Seftware—Practice and
Experience, 13, (3) (1983) (to be published).

. P. Mateti, ‘Documentation of program indent: a model for the complete documentation of computer
programs’, unpublished class notes, Department of Computer Science, University of Melbourne,
Parkville 3052, Austealia, 1980,

6. B. H. Liskov and V. Berzins, ‘An appraisal of program specifications’, in P. Wegner (ed.), Research

Directions in Softweare Technology, M.1T'. Press, Massachusetts, pp. 276-301, 1979.

N. Wirth, *‘Syntax of Pascal in extended BNF', Pascal News, 12, 52-53 (1978).

(28]

wn

=]

o e TV T ¥

ne ng.'I'l-,lrr'll- R e -—;|H=-|-'I A==y
iy v i el Lo 'lr-fl'l‘!'l—'l'ﬁihrrf'-l-nunF -.uul
"‘-'H'HN Sl LA | l‘I"— e S R T - (T NI |i
-=h|'- = e -'rjlrﬂ " |vﬂ¥ A Il AR nmT= | ITT NI |'||

'I"! = e iy r.u»ﬂ!:lll NSO IO Ssmain I s un

=GE LT mrene S oM I T T T N M B [l AT el

T werniamadihoinn ol T8 SN O I w0 RN (al10 i
AR R R URTE S S ligad | =) T LA
mE ECIOEE TEel= wE Dot] UMUT eI 1 A e Dkl b
T STIIE T WG PSRt EPVE iy [SRS TR T HII_I Lg ...'4 . m‘!
Ml B AR T Rl LALTTE LRI Ml Tk Riaehit Liig

PO
— e ! ﬂlm-ﬂmlrfer .mm._
n- L L "TNSR, h-.n

== b ‘n"ﬂ
Tl)

.ﬁl-ll II'I'!'-" [0 e . N " v

'ﬂ‘-l&-' e b= | = in| mil =i 1 Y e
w Bvn i == Wi M o=n EERE III:‘I'!. WA
T L I e R R I
s mslTr O nE TnEE YR R e T [l e e

wrvren s v b e o wam nn BTN 0 AR L LRI T w0 il ol 0 il e Y
TITY ST T lNesmmses ¥l =il B 7 med 9 uﬂlq B 0ol
1 s T oy i Tt T o A 0 T 0 i G e bl
WL e g g | .l . g v S W et e

e e ey Tl
i-.hill-' M‘ﬁ:ﬂ M%W_Emﬂ:lﬂ.

e Lo
HEEE RIS Tl e el il Sl et b nd! s 1 .
FIWE g 11

S i F g = e P --ﬁrr__:-...:ﬂ- .l-llll
B R e e . e e
ll-ill

e —rpory g mvl-—ll—-rr-mliq ||I_|rrr I
-

1.5 M 1L 1 i A e M
ST 17—y g e (0]] lﬂulﬁ |
- s ||i IR I Y10 |ﬂ€@ -
 n IIIFI'IF [P (e ;

