178 PRABHAKER MATETI

Recall that we replaced terminal symbols appearing in the right-hand side of pro-
ductions by their token names and considered the latter as non-terminals, Thus any
zi that can be generated in one application can contain only one token and INDENT(z1)
contains no blank space in front of this token; thus pLOT(t, \n|INDENT(zi{), 0)
holds for some appropriate token ¢.

For the inductive step, note that zo = INDENT(2/) can be divided such that
T0 = 20203 ...| 20, NO zo; contains white space suffix, and N; —* 20;. Further note
that the zi;, zu; and zo; are all lexically equivalent. Since ZU; = INDENT(21}), zo;
possibly differs from zu; only in the width of the margin of each line and by containing
an extra \z in the prefix of zo. The rest of the proof of this step follows from these
observations and is simple but tedious requiring case analyses for each non-terminal N
of the grammar. Here we present two such cases—one for the repeat statement and
another for the procedure declaration.

Case N = repeat statement

Clearly TKNSEQ(20,) = REPEAT and TKNSEQ(zo0,_,) = UNTIL. Also, for 1<j<k—1,
zo;must equal ¢, (zu; with the margin of each line of zu; increased by voi blanks). Here
the string ¢ is either empty, or is '# depending on the segment sequence SEGSEQ(zi).
If a segment boundary fell between zi;_, and sy, and if zi;_ did not end with a \n,
then ¢ = \n, else ¢ =""". From the definition of secseq, it follows that a segment
boundary falls between z,_, and zi; either because 2i;_, terminated in a \, or in a
token from Lc followed by (portions of) comments, or because zi; begins a token
from Lo. Since Lo and LCc were chosen so as to make NEWL predicates true,
PLOT(repeat statement, ' n, zi, 0) must be true.

Case N = procedure declaration

We shall make further assumptions below for the sake of simplicity in this
illustration. We have that TKNSEQ(z0,) = PROCEDURE, TKNSEQ(Z0,) = ORDINARY (the
corresponding word being the name of the procedure), TKNSEQ{z04) = SEMICOLON,
assuming that the procedure heading has no parameters, and TKNSEQ(z0,) = END.
Further assuming that the procedure has only variable declaration part, we have
TKNSEQ(z0,) = VAR. Let 20s,...,z0,_, correspond to this declaration such that
TKNSEQ(Z0,) = SEMICOLON, TKNSEQ(%0,+) = BEGIN. Clearly then, z0,,,...,20,_, cor-
respond to the code body of the procedure. Note that the value of NMG() will be 2*uo1
starting from zos until zo,, both inclusive. After zo,, , it becomes vor and remains at
least uol until zo,. As in the previous case, we see that the code body and the variable
declaration and hence the procedure declaration thus meet the high level
specifications.

7. CONCLUDING REMARKS

This section contains some remarks based on personal experience with this case study
in specifying the behaviour of a medium sized program. I wrote the first version of an
indenting program in late 1978 mainly as a reaction to the very long, slow and often
clumsy indenting programs that were known to me at that time. A year later, I needed
a class-room example of a real life program whose specification and proof are given
sufficiently rigorously but with as little formalism as possible.

