INDENTING PROGRAMS 175

mentioned before, syntax validation is not in the domain of indenting programs we are
considering.

Cases 2, 3, 4 and 5 would be simpler if Pascal had a different syntax. The special
token pecL indicates that declarations (of labels, constants, types, variables and
procedure/functions) are due next, If the last token of T is LPAREN, which can arise in a
syntactically correct program only inside the parameter list, the tokens vag,
PROCEDURE and FUNCTION have no effect, The declarations end when a BEGIN is
encountered; this is shown in case 5. Case 4 arises because FORWARD and EXTERN are
not reserved words. They have the special meaning only when they appear im-
mediately following the procedure headline.

Case 7 arises because of variant records with tag fields. In our specification coLoN
indents and it is, in this case, terminated by the oF.

5.3. Line splitting

Each split up part of a line is called a segment. As we shall see, there is a one-to-one
correspondence between input segments and output lines. These two are in fact
identical but for the prefix and suffix white spaces.

The function FIRSTSEG maps non-white prefixes of a line to its first segment, using
the sets Lo, and Lc. The function SEGSEQ maps arbitrary strings to segment sequences.
The set Lo contains all (line opening) tokens whose corresponding words should
always appear as the first non-white string in an output line. Similarly, the set Lc
contains all tokens which always close an output line but allow any immediately
following comments. Thus the occurrence of a token from Lo in the middle of an input
line will split it just to the left of the token. The sets LO, LC are chosen to match the
specifications of Figure 2.

L0 ::= {PROCEDURE, FUNCTION, PROGRAM, LABEL, CONST, TYPE, VAR,
WHILE, REPEAT, UNTIL, IF, ELSE, CASE, GOTO}
LC :: = {SEMICOLON}

Intuitively, the segmentation of strings as produced by secstEQ can be explained as
follows. Place imaginary markers as follows: (1) before the very first and after the very
last characters of the string, (2) to the immediate right of every ', (3) to the
immediate left of a token belonging to Lo, and (4) to the immediate right of a token
belonging to Lc but skipping over comments following it. The strings thus enclosed
between pairs of consecutive markers are segments. The functions FIRSTSEG and
SEGSEQ imitate this process in a non-operational way.

Recall that we denote by 0Oss, the empty sequence of segments, and by !
concatenation of segment sequences,

Definition of FIRSTSEG

Let w be a prefix of a line, and let @ = LEX(T, ).

1. Suppose /c 0 COMBGN o ORDINARY* is a suffix of T, where /c stands for a token from
Lc. Then FIRSTSEG(T,2) ::= 1, if Q does not contain COMEND; otherwise
FIRSTSEG(T,w) ::=x, where x is the longest prefix of w such that
LEX(T, ) = ORDINARY* 0 COMEND 0 (COMBGN 0 ORDINARY* 0 COMEND)*.

2, Suppose Ic o COMBGN 0 ORDINARY* is not a suffix of T. Then let x be the longest
prefix of w such that LEX(T, x) does not contain (i) any token from Lo except as its
first token, or (ii) the subsequence /co(COMBGN o ORDINARY* 0 COMEND)* 0gq,
where ¢# comBeN. Then FIRSTSEG(T, w) = .



