INDENTING PROGRAMS 173

2. Let w contain delimiters.

{ <", semicoLOND,
et , QUOTE),
(e , COLOND,
S . LPAREN),
<y , RPAREN),
¢t , COMBGN),
S , COMEND),
(s , ORDINARY),
- 1 , ORDINARY),
{\e , ENDFILE),
St , COMBGN),
(AR , COMEND),
{"u=", ASSIGN) }

Note the obvious fact that any string consisting of exactly one non-white character is a
token.

The essence of lexical analysis is captured in LEX which produces the token sequence
of z in the context of a token sequence T already produced. Recall that 00 denotes the
empty token sequence, and o denotes concatenation of token sequences.

Definition of LEX

1. Lex(T," ") ::=00.

2. LEX(T, % ¥) 1= LEX(T, ¥).

3. Let = be free of leading white space. Then LEX(T, 2) ::= toLEX(T 0 ¢, x), where
z = w,x, and w is the longest prefix of = such that TKN(w) is defined. The token ¢
is TKN(z) unless (i) TKN(z)# COMEND and T = s 0 COMBGN 0 ORDINARY *, or (ii)
TKN(1v) # QUOTE and T = S 0 QUOTE o ORDINARY ¥, for some s free of unmatched
QUOTES. In the latter two cases, { = ORDINARY.

Definition of TKNSEQ
TKNSEQ(z) :: = LEX(00, =).

Since syntactically correct Pascal programs have one of the delimiters immediately
following reserved words, we do not risk non-recognition of such words by ignoring
other conventional delimiters {such as operators). Lexical analysis performed by a
typical Pascal compiler otherwise matches with LEX except when dealing with
comments and strings. In compilers, comments are simply swallowed and the strings
are returned as tokens, For our purpose here,, however, the layout of comments is
important. It would seem logical then to split a comment into three tokens, namely,
COMBGN, the comment contained, followed by coMEND. Since comments can span
several lines, this decision would complicate the definitions of functions given in
subsequent sections. Thus, we define LEX(T, ) based on the longest prefix of z thatis a
word, and change the token to ORDINARY if T has an unmatched COMBGN or QUOTE.
For example, the string "(*(*)" is broken into words as ""(*"|"(*"!")" giving the
token sequence T1oT3 is a reduced token sequence of T10T2 T3 if T2 is the token
“doesn''t it'"" is tokenized as "''"'|“doesn™ " e e . Note, however,
that our line splitting rules do not split a Pascal string that was contained in one source



