172 PRABHAKER MATETI

5. LOW LEVEL SPECIFICATIONS

We now develop a set of specifications that appear independent of Pascal grammar.
Whereas the previous section left undefined the behaviour of indenting programs
when invalid constructs of Pascal are given as input, this section specifies what
transformation is to be done for an arbitrary input string, and hence an arbitrary
sequence of tokens. This latter transformation is designed to coincide with that given
above for all syntactically valid constructs of Pascal. An outline of a proof of this fact is
given in the next section.

5.1. Lexical analysis

Lexical analysis is a process that breaks up strings into sequences of ‘words’, more
widely known as tokens. We say -a character string w is a word if TkN(w) is not
undefined, where TKN is a partial function that maps character strings to tokens as
elaborated below.

Definition of TKN
For a given string w, TKN(w) is defined as ¢ if there is a pair {(w,?) in one of the
following sets; otherwise TKN(w) is undefined.
1. Let w be free of delimiters, namely the following characters: blank, tab, end-of-
line, end-of-file, parentheses, braces, semicolon, colon, asterisk, quote and
period. (Other conventiconal delimiters do not concern us,)

{ ("'procedure” , PROCEDURE),
{""function" , FUNCTION),
{"'program" , PROGRAM ),
{""forward" , FORWARD)
{"'repeat" , REPEAT ),
("'record" , RECORD),
("'extern" , EXTERN),
'while" , WHILE},
Muntil" , UNTIL),
{"'label" , LABEL),
{"'const" , CONST),

("' begin’' , BEGINY,
g"wz'th' . W[TH)),
“type" , TYPE),
(""then" , THEN,
{"'goto"’ , GOTO),
{""else" , ELSE),
"case" , CASEy,
“uar' , VAR,
{"for" , FOR),
"end" , END),
of' ) OF),
"do" , DO,
{other w , ORDINARY) }



