INDENTING PROGRAMS 171

PLOT(n, s, m) 1=
PLOT(ny, 5y, m)
& PLOT(n,, m+RMI(n,, 15))
& ..
& PLOT(my, Sy, m~+RMI(n, 1y ... 0y, 1))
& NEWL(s;) & NEWL(s;;) & ... & NEWL(s;,)

where RMI(#, ... n;_ 1, 1)) is the ruling margin increment for the n; as shown n
Figure 2 for that production rule and only the nonterminals n;y, ;5 ...n;, has
the '# to the left of the reference vertical.
Thus, the above pLOT(repeat statement, rpstst, m} would be true for m =0, for
example, if st1 and st2 were empty strings, wl and w2 were equal to '\ n and exp did not
contain '\ n.

Definition of 18aT

1SAT(s, m) ::= true iff either s =% *"n,"b**m c y, for some string y and non-
white character ¢, or s does not contain ' n.

If s does have a ' n, then 1SaT(s, m) will be true iff the left-most non-white character
of s is exactly m blanks away from the preceding '\n.

Definition of NEWL
NEWL(s) ::= true iff s = % *|\n!x, for some string x.

That is, NEwWL(s) is true iff s has a ‘» preceding which there are no non-white
characters.

4.2. The indented file

We say that a string s is lexically equivalent to ¢ if both produce the same sequence
of tokens. More formally, s and ¢ are lexically equivalent if by replacing the inter-token
white space by a single blank, and by deleting any white space prefix/suffix, if any, the
resulting strings s1 and ¢1 become equal. (See also the next section.)

Given a file 71 (the input) an indenting program should produce file Fu such that

1. for each 7, 1 £/<number of lines in Fi, there exists a u, 1 <u < number of lines
in Fu, such that FI[1 .. {] and Fu[l .. u] are lexically equivalent where ¥[1.. 1]
stands for the first # lines of file F,

2. pLoT(nt, \n Fu, 0) = true, and

3. no file with fewer lines than are in Fu satisfies the above,

whenever FI is a sentence corresponding to a non-terminal nt of Pascal grammar.
This is the specification of indenting programs that appeals to us. Part (3) guarantees
that input lines are not split up unnecessarily. In part (2), a'n is prefixed to FU so as to
treat the end of line character as a ‘new line’ character. Without this “#, a NEWL
predicate might be false even though the first token of the very first line is at the
correct margin. Note that the behaviour of the indenting program is unspecified when
F1 does not contain a legal construct of Pascal. Note also that part (1) of the
specification tmplies that Fu will have at least as many lines as in F1. It also rules out
recombination of input lines and then splitting them up into cutput lines.

