170 PRABHAKER MATETI

n= e.g., block =
", \[label declaration part]
n,y [constant definition part)
(type definition part]
i[var declaration part]
\procedure and function declaration part
"y compound statement

where all the #; are right next to the references vertical and have no \n character
appearing to its left.

4.1. The predicate properly-laid-out

For example, we say that a string named rptst produced by the non-terminal repeat
statement 1s properly laid out at m if (1) the reserved word repeat is the first word on
that line starting at a margin of m, (2) the statements of the loop body obey the rules of
Figure 2 recursively, (3) the reserved word unt:l is the first word on that line starting at
margin m and (4) the expression after unti/ obeys the rules recursively. More formally,
if the instance rptst we are considering had two statements, say st1 and s¢2, in its body
and exp as its expression, and w1, w2 are white spaces, i.e.

rptst = wl “repeat’ stl}'";" [se2 w2 "until" | exp
then the logical conjunction given by the diagram is:

PLOT(repeat statement, rptst, m) =
PLOT(n¢REPEAT, w1 '"repeat’’, m) & NEwL(z21 | " repeat’)
& pLoT(statement, st1, m+uvor)
& pLOT{nysEMICOLON, "';", m - UO1)
& PLOT(statement, 512, m+vo1) & NEWL(st2)
& proT(ntuNTIL, w2 "until", m) & NEWL(w2 | "until")

& rpLoT(expression, exp, m+ uoi)

where vo1 stands for the unit of indentation. We now define PLOT and NEWL more
precisely.

Definition of PLOT
PLOT is a predicate on triplets consisting of a non-terminal, a string and a
margin width.

1. PLOT(n, s|c, m) ::= pLOT(n, s, m), where ¢ is either 2, or ‘e. Thus we assume
below that s has no trailing white space,

2. pLOT(n, 5, m) ::= false, if » does not produce s. Thus we further assume below
that n —%*g,

3. pLoT(empty, "' "', m) :: = true, for all m.

4. pPLOT(Z, 5, m) ::=18AT(s, m), where ¢ is a (non-terminal) token.

5. Let n=mn;n,...m be a syntax rule of the language. Let s,5,,5,,...,5 be

corresponding strings generated from the non-terminals # and the n;. Then



