INDENTING PROGRAMS 167

a string, not containing end-of-lines or end-of-file markers, followed by the end-of-
line character. A file is a sequence of lines followed by the pseudo-line containing
exactly the single character 'e.

We deal with several kinds of sequences. We adopt the convention that any single
object is also a sequence of length one consisting of that object. The concatenations of
strings, segment sequences and token sequences are denoted by ., ! and o re-
spectively. Note that sequences of lines, or of segments are also strings. We use regular
expression notation when requiring sequences of a certain pattern. Thus, x ** & stands
for the sequence x repeated k times, and x* stands for x ** &, for some 22 0. Unless
explicitly stated otherwise, by string we mean a string of characters free of ‘e. We
show strings enclosed in double-quotes. A string x is a prefix of z if = = x! y for some y;
x is a suffix of = if 2 = y,|«, for some y. The words prefix and suffix have analogous
meaning when referring to other kinds of sequences. Empty string, token sequence

and segment sequences are denoted respectively by " "', 00 and Oss.

The specifications require many predicates and mathematical functions. We use
names with upper-case letters in them for these. In the definitions read ‘::=" as ‘is
defined as’.

4, HIGH LEVEL SPECIFICATIONS

In this section we specify the layout of programs using the Extended BNF grammar
of Pascal. As the lexical structure of Pascal is left undefined there we expect the reader
to use his own intuitive understanding of how a string 1s mapped to a token sequence,
for the time being. We also ignore, until the next section, the presence of comments, as
does the above syntax definition. We also make minor changes to the grammar. For
instance, all occurrences of terminal strings are replaced by non-terminals whose
names are composed of the letters nt followed by the name of the token (in upper case).
Thus the nonterminal #ntREPEAT produces w, ''repeat’’, where w stands for a (possibly
empty) white space

Given a string s with no white space suffix, s = 5,155 ...:5,, and the corresponding
production rule n = n ny...m, such that n =*s, n; »*s;, we assume that the 5; do not
have white space suffix, However, the s; may have a prefix white space. This is
significant as the white space prefix of each line is, so to speak, all that matters.

We say that a given string s corresponding to a non-terminal » is ‘properly laid out’
starting at margin m if PLOT(n, s, m) = true. The definition of pPLOT is given
compactly in a syntax-directed way in Figure 2. Each production acts as a template for
a conjunction of NEWL and PLOT predicates, which are defined below; substituting
actual strings for the non-terminals gives a logical conjunction which can then be
evaluated. Each line in the diagram contains one terminal (which we show by the
appropriate token) or one non-terminal (and possibly a metabracket) whose inden-
tation from the reference vertical gives the ‘ruling margin’ increment for it. The
presence of a NEWL predicate is indicated by a’, n character to the left of the reference
vertical.

To conserve space, we have omitted from Figure 2 all productions whose
specifications are of the form

7

