L\

164 PRABHAKER MATETI

1. INTRODUCTION

That written material expected to be read by humans should be laid out with thought
and care is widely appreciated. Yet the layout of many computer programs is poor. To
make matters worse, programs written in modern programming languages have many
nested levels of control structures and declarations. While compilers for these
languages accept ‘free-format’ input and can distinguish the nesting regardless of how
the text input is laid out, most humans are yet to adapt themselves in this fashion.

Laying out the text of a program so that its structure is readily apparent has come to
be called ‘pretty-printing’. Many sets of rules for pretty-printing exist (e.g.
References 1-3). These rules range from such typewriting conventions as always
following a comma by a blank and flanking an equality sign by blanks to insisting that
reserved words such as goto appear only at the beginning of a line and never hidden
somewhere in the middle of a line. Much of the work in the layout of a program text is
routine once a set of systematic pretty-printing rules is chosen. In fact, several
programs that pretty-print the given input exist.

In this paper, we limit ourselves to programs written for Pascal, and use the less
pretentious word ‘indenting’ in preference to ‘pretty-printing’. We develop the basic
mathematical functions required to specify precisely the input-to-output trans-
formation performed by a class of indenting programs. The companion paper?® proves
the correctness of an indenting program meeting the specifications developed here,
and Reference 5 discusses global issues about the program.

The indentation scheme embodied in our specifications below has evolved over a
period of years accommodating and adapting the many schemes proposed in the
literature. The author finds it satisfactory but is aware of others who do not. The goal
of this paper is not to promote this scheme but to show that specification for such
programs can be developed with sufficient precision employing simple mathematical
notions. Section 2 discusses our expectations of indenting programs. Section 3
establishes notation. Section 4 gives the input-to-output transformation performed by
these programs using the syntax definition of Pascal. Section 5 specifies the
transformation independently of this syntax definition. Section 6 shows that if the
input file contains a legal construct of Pascal then the specifications of Sections 4 and 3
are equivalent.

2. WHAT SHOULD INDENTING PROGRAMS DO?

The specifications of a program are simply our requirements and expectations of it but
stated precisely without ambiguity. We ignore certain specifications of a program such
as that its length be so much, or that it be written in language X without gotos,
Instead we will concentrate only on the relationship between the input and output of
indenting programs. Such specifications are called functional specifications.®

We list some of our expectations of indenting programs below.

1. The most obvious and yet oft-forgotten requirement is that the output of an
indenting program should be ‘lexically equivalent’ to the text input given.
Should indenting programs accept only syntactically correct text? No. We
believe that indenting programs must accept any text input; if the input happens
to be a syntactically correct program, we then expect its output to be properly
indented. And if the input is not syntactically correct, the output text should be
indented as reasonably as possible. A notion of reasonableness underlies our low



