SOFTWARE —PRACTICE AND EXPERIENCE, VOL, 13, 199-226 (1983)

A Correctness Proof of an Indenting Program

PRABHAKER MATETI¥* AND JOXAN JAFFAR
Department of Computer Science, Umversity of Melbourne, Parkuille, Victoria 3052, Australia

SUMMARY

The correctness of an indenting program for Pascal is proved at an intermediate level of
rigour. The specifications of the program are given in the companion paper.' The program is
approximately 330 lines long and consists of four modules: io, lex, stack and indent. We prove
first that the individual procedures contained in these modules meet their specifications as
given by the entry and exit assertions. A global proof of the main routine then establishes that
the interaction between modules is such that the main routine meets the specification of the
entire program. We argue that correctness proofs at the level of rigour used here serve very
well to transfer one’s understanding of a program to others. We believe proofs at this level
should become commonplace before more formal proofs can take over to reduce traditional
testing to an inconsequential place.

Key woRrps Correctness proofs Pretty-printing Pascal

‘It 13 one of the chief ments of proofs that they instill a certain
scepticism as to the result proved.’
Bertranp RusseLt {1903)

PREFACE

The present paper is one of a triplet on an indenting program for Pascal. We
undertook this exercise with three objectives in mind:

1. The literature sadly lacks real-life programs whose correctness is established by
proof rather than by testing. On the other hand, those who have practised
proving correctness have been raising the hopes of the readers to such an extent
that a single mistake in a published proof gets the widest adverse publicity. We
hope that our indenting program and its specifications and proof will serve as
examples in this regard.

2. The practising programmer, we find, often uses the lowest level of formalism
whereas a student who has just been through correctness methods employs
formidable notation and an excess of formalism. The right level for a given
program escapes both. It is not easy to say what is a right level. This can only be
communicated through examples.

3. There is 2 myth that giving precise specifications for ‘real-life’ programs is often
not possible. We are quite willing to accept this as a definition of ‘real-life’
programs but not as a corollary. Another myth is to equate precision with
formalism. We hope that these papers will serve as examples where sufficient
precision is attained with very little formalism,

Only the reader can tell how far we succeed in fulfilling our objectives.

*® Present address: Department of Computer Engineering, Case Western University, Cleveland OH 44106, U.S.A.

0038-0644/83/030199-28%02.80 Received 15 September 1980
© 1983 by John Wiley & Sons, Ltd.

200 PRABHAKER MATETI AND JOXAN JAFFAR

1. INTRODUCTION

Current literature in programming methodology urges us to switch to proving our
programs correct rather than validating them by thorough testing. Yet the practical
world of programming believes this to be simply ‘ivory-tower’ talk and considers such
an attempt uneconomical. Even if we wish to ignore the economic feasibility of proofs,
the very formal approach taken in the proof of small programs has made practising
programmers wary of it. However the rigour with which a proof may be given can be
reduced. There is an intermediate level of rigour which is more convincing than
‘hand-waving’ and much less formal than, say, first-order logic. Correctness proofs at
this level of rigour have long been in use in dealing with combinatorial algorithms,
(See, e.g. reference 2.) Most proofs of theorems in college-level mathematics are at
this intermediate level. The effort required in following the correctness proof of a
program at this level is only marginally greater than that in thoroughly understanding
the program. However, designing, structuring and presenting such proofs still
requires an effort from most of us (as we found in this case), that is far greater than in
the construction of the program itself. We believe that the required effort would
decrease as we gain more experience in proving the correctness of large programs.

This paper presents a correctness proof of an indenting program for Pascal at an

intermediate level of rigour. The specifications of this program are given in Reference
1. We undertook this task with several objectives in mind, and as a test case for some of
our beliefs:

1. The level of understanding and insight gained through correctness proofs is far
greater than is possible by any amount of testing. Perhaps far more important is
the ease with which such understanding can be passed from the program’s author
to its other readers through its proof.

2. More and more proofs of reasonably large programs should appear in the
published literature in order to win over the practising programmer; economic
feasibility can only be attained after they have been won over.

3. Correctness proofs of other programs (be they indenting or not, written in Pascal
or not) can be structured on parallel lines to the module structure of the program.
If module interfaces are kept to a minimum and if the program is designed with
care, correctness proofs follow quite routinely from the program.

4. Several proofs, each at an increasing level of rigour, should be given. Each proof
can be regarded as a sketch of the next higher level one, catering to the
requirements of all readers, from the devout believer to the very sceptical.

5. To add to the evidence of the claim that large programs can be proved using the
same basic techniques employed in proving small programs.

2. PRELIMINARIES

The indenting program we present here is written in a free-style language to
emphasize the independence of the proof techniques from the specific programming
language used. We ask the reader’s indulgence not to get side-tracked by its syntax
and control structures. The free-style language offers us notational convenience and
displays the modular structure of the program more clearly than is possible, say, in
Pascal. The semantics of the language should be self-explanatory in the context of our
program. Neither the specification, nor the design of our program is defended here;

A CORRECTNESS PROOF OF AN INDENTING PROGRAM 203

the not-so-obvious case of the line buffer ¢[0..cxMAX], every c[i] referenced
is such that 1<i<lastx+1, except in procedure readline where i may be zero
also.)

2. All procedure calls in the program are such that actual parameters are distinct.

3. We assume that no integer underflows or overflows occur.

4. We also assume that the value of a variable remains unchanged if (i) it does not
appear on the left-hand-side of any assignment statement, and (ii) it is not an
actual var parameter in any procedure call. (Note that this assumption may not
hold in some programming languages.) However, when a variable is to remain
unchanged but does not satisfy (i) or (ii), then we shall explicitly state and prove
this fact.

5. Unless the exit assertion of a procedure or program segment explicitly requires
that a variable not locally declared have a certain value, it is implicitly required
that all global variables remain unchanged. Without this convention, we would
be forced to introduce a number of ‘let ...’ statements in entry assertions and
equality predicates relating these to the global variables in exit assertions.

3. CORRECTNESS PROOF

The program is approximately 330 lines long and consists of four modules: ‘o, lex,
stack and indent. Figure 1 shows the interrelationships among these modules. An
arrow from module A to module B indicates that A calls procedures of B. Also indicated

meodule ind;

cmg, \\
/S me;

b
n,

'Y

module stk; module /ex;
5 [Sfromx,
t omg, \ tox,
t mg; | nextx,
lastx;
[

e o e

|
!
Lk
module fo;
Sromx,
fox,
nextx,
lastx;
€,
t denotes that this data structure belongs to another module.
Figure 1. Module interrelationships

are the data structures shared among modules. We prove first that the individual
procedures contained in these modules meet their specifications as given by the entry
and exit assertions. The correctness proof of the main procedure of indent acts as a
global proof and establishes that the interfacing between modules is correct and that
the specifications of the entire program are met.

204 PRABHAKER MATETI AND JOXAN JAFFAR

As the reader will soon realize, our assertions are of crucial importance but their
proofs are often routine and trivial. In fact, any of our procedures or program
segments may be replaced with another (and yet the entire program meets the global
specifications) so long as the new procedure or segment meets its specification as given
in entry and exit assertions. For example, a naive algorithm appears here as procedure
stdtoken in module lex whereas the ‘production’ version of our program running under
Unix replaces it by a much faster algorithm whose correctness can be proven
separately. Our omission of straightforward proofs is further justified by this
interchangability of procedures.

3.1. io

All input is done by the procedure readline and all output by procedure printline of
this module. readline inputs the next line from the input file into the line buffer array ¢
and trims the suffix white space if present. printline removes the prefix white space
from the string c[fromx .. tox] and prints the remaining characters on one line with a
left-margin of some number of blanks. ¢[0] is initialized to any non-white character so
as to act as a sentinel in leftward scanning (line 33) done in readline to trim off the
suffix white space. ¢[1] is initialized so that it is not undefined when the very first call to
readline is made,

0 module fo;
1 const exMAX = ..; {exMAX>0}
2 var
3 c : array [0..cxMAX] of char,;
4 Jromx,
5 tox,
6 nextx,
7 lastx :0..cxMAX,;
8 mg,
9 nmg : margin;
10 (* mg, nmg belong to the indent module *)
11 initially
12 c[0) := any non-white character;
13 c[1] := any non-\e character;
14 (* above const, vars (except mg, nmg)
15 are shared with module lex
16 *)

Figure 2 will help understand the use of the various indices of the line buffer ¢. The
names sv, ..., sz will be used globally in the rest of the paper. Note that some strings,
e.g. sx standing for c[fromx .. tox], can be empty (i.e. fromx > tox).

The following invariant chfINV holds throughout the program after the very first
call to readline has been executed:

cbfINTV(kE) stands for

1< fromx<tox+1 <nextx<lastx+ 1< caMAX
& [1..lastx +1] = TRIM(TRUNC(Input[kR])).

205

A CORRECTNESS PROOF OF AN INDENTING PROGRAM

—’—XVWx’

T xjso}

saotpus)t puv 43ffng auyy ay g ‘7 aming

[x1s0q - xpx0u]2 10§ puess as
pue ‘[| —xpxan -* [4+ x07]2 10) pueys ms

[xos

*xXmoif]r J0j pums xx

‘(1 —xmoif--]2 10) pums &5

|- possasosd aq o) 194 —|
as

([Jindup)onnuL)iviuL

‘[1Janding 10) pumis =5 jag
,, H
by & 3 I 0
= | || | | |
I — [1
[~ uajyorivasmd —| |« x3y 4q passasosd —| |~ ndino usaqsoy -
ms xs «3

206. PRABHAKER MATETI AND JOXAN JAFFAR

Note that c[lastx+-1] ="'n always, and c4fINTV holds throughout the indenting
program for an appropriate kk, except in the body of readline and before the very first
input line has been read.

3.1.1. readline

The procedure inputchar reads from the input file one character at a time. We
assume that it satisfies

{ \e of input file has not been read yet
& X is the input done so far

inputchar(k};

{ k= character immediately following X in the input file

& X\kis the input done so far

}.
(In some computer systems, the character \n, \e may not exist, but instead have
standard functions eoln and eof {or the equivalent), that indicate if the end of a line or
file has been reached. In such cases these characters can be accommodated in a pair of
variables, one to indicate if it is one of these two characters and the other the value of
the character. We then require

{ eoln { eof

} }
inputchar(k) and inputchar(k)
{ k=\n { k=\e

in addition to the above.)

According to our definition of files, every file must contain at least one line (the
pseudo-line containing ‘e).

Because chfINV(kk) holds for some kk at the exit assertion of readline, c[1]#e
implies that the last input line has not yet been read; i.e. Input[II] does exist, if the
input done so far is fuput[1 .. J7T—1].

17 procedure readline;

18 var i;

190 { c01#%

20 & let Input[1..II—1] = = input done so far
21 & c[l]#\e

22 .

23 f:=1;

24 inputchar(c[1]);

25 if c[i] #\e then

26 while c[i]#"n do

27 ificcxMAX then i :=i+1 fi;
28 inputchar(c[1])

26 od,;

30 { 1<igexMAX

A CORRECTNESS PROOF OF AN INDENTING PROGRAM 207

31 & ¢[1..7] = TRUNC(Input[II])
32

33 while ¢[i] = % do i :=i—1 od;
34 (* must terminate since c[0]# %*)
35 fi;

36 cli+1] :=\n

37 lastx =1

38 fromx = nextx :=1;

39 tox :=0;

40 { 1=fromx=tox+1 =nextx <lastx+1<cxMAX
41 & 1. lastx+ 1] = TRIM(TRUNC(Input[I1]}))

42 & input done so far = Input[l .. I1]

43

44 end proc;

Note that /astx can be 0 at exit from this procedure. This occurs iff the line read was
all-white. Reading the \e can occur only at line 24 because the last line of a file is the
pseudo-line containing exactly the one character \\e. If the operating system environ-
ment is such that ‘text files’ often do not satisfy our definition of a file, it is necessary to
include a check for end-of-file in the while loop at line 26,

3.1.2. printline

The procedure outputchar appends one character at a time to the output file, We
assume that it satisfies

{ let X == output done so far & K ==

}

outputchar(k),
{ Xk = output done so far & k=K

The predicate 2 = K of the above exit assertion essentially states that & is unchanged
by outputchar. If we drop this from our specification of outputchar, we cannot
guarantee that the contents of the buffer ¢ are still TRIM(TRUNC(Input[I1])). Observe
that even if fromx>tox or if ¢[fromx..tox] is white space only, printline prints m
blanks and a ‘n. This might appear extravagant and instead one might think of
outputting only a '\#; but this would make the specification of output as a function of
input considerably more complicated.

45 procedure printline;

46 const QUTLL = ..; (*maximum output line length, OUTLL >0%)
47 var i, j, m;

48 { let Output[l..VV —1] = = output done so far

49 & let M ==mg, N==wumg
50 & 1<fromx<tox+1<lastx+1
51 }

52 [:= fromx;

208 PRABHAKER MATETI AND JOXAN JAFFAR

33 while (c[f] = % & i<tox) do

54 f:=i+1

55 od;

56 { c[i.. tox] = psTRIM(c[fromx .. tox])

57

58 m :=0;

59 if (O<mg+tox—i<OUTLL) then m := mg fi;
60 forj:=1 to m do outputchar(’b) od;
61 for j : =/ to tox do outputchar(c[j]) od;

62 outputchar(\n);

63 Jromx 1= tox+1;

64 mg .= nmg;

65 { fromx=tox+1& mg=N

66 & m= Margin(M, c[fromx..tox])

67 & Output[VV] = \b** m,pstrim(c[fromx .. tox]), \n
68 & output done so far = Output[l.. V'V

69 }

70 end proc;

The function Margin (line 66) maps an integer and string pair to a non-negative
integer. Margin(k,s) :=k, if 0<k+ #psTRIM(s) <QUTLL, and :: = { otherwise,

3.2. lex

Procedures contained in this module are nexttoken, newline, firsttokeniniine and
initlex, of which nexttoken maps character strings into token sequences.

0 module /ex;
1 const cMAX = ..
2 pELIMITERS = {\b, \t, \m, \e, "3, " {", "}, "',
3 ”="v ”:”! ”(“:” "s "““};
4 var
5 c : array {0..cxMAX] of char;
6 fromx,
7 tox,
8 nextx,
9 lastx : 0..cxMAX; (* these vars belong to module io *)
10 incomment,
11 instring : boolean;
12 tokenno : integer;

13 initially
14 incomment ;= instring .= false;
15 tokenno 1= 0,

A CORRECTNESS PROOF OF AN INDENTING PROGRAM 209

The invariant lexINTV(uu) holds before and after every call to the routines of this

module for an appropriate uu {cf. Figure 2):
lexINV(uu) stands for

TKNSEQ(sx | s \b | sv) = TKNSEQ(sx | sw | sv)
& tokenno = # TKNSEQ(sx sw)
& (tokenno>0— # TENsSEQ(sw) = 1)
& incomment = UMCOM(TKNSEQ(Qutput[. .uu) sx sw))
& instring = UMQOT(TKNSEQ(Output[1 .. uu] sx sw))

{The functions TKN, TKNSEQ and LEX are defined in Reference 1. Note the insertion of a
blank into the argument of TKNSEQ in the first predicate of lexINV. Without this subtle
device, it would be more complex to describe the properties of nextx. If nextx > fromx,
there are two possibilities: (i) the character c[nextx] is a delimiter and therefore the
previous token ended at nextx—1; (ii) the character ¢[nextx] is not a delimiter and
therefore the previous token is either a single or double character token starting with a
non-white delimiter. On the other hand, nextx will equal fromx when a line has just
been read and the first token from it is yet to be extracted.

Note that the value of fromx and lastx change only indirectly via calls to procedures
of module 7o,

3.2.1. nexttoken

Let us first consider three principal segments—pgettoken, dimtoken and stdtoken— of
procedure nexttoken, The program segments dimtoken and stdtoken are given only for
the sake of completeness. Far more efficient algorithms can be constructed for these;
however, their correctness can be established separately from the entire program. The
naive algorithms implement the definition of TKN (see Reference 1) straightforwardly
and we omit their proofs.

gettoken. This program segment obtains the longest prefix c[nextx..j—1] of
c[nextx .. lastz] such that ¢[nextx .. {—1] is all-white and TKN(c[i..j—1]) is defined as t.

16 program segment gettoken

17 of nexttoken;

18 { cllastx]# % & cl[lastx+1]="1;
19 & 1<nextx<lastx

20 }

21 i:=unextx

22 while ¢[{] =% do i :=i+1 od;
23 { nextx<iglastx

24 & c[nexix..i—1] = % ** (1 —nextx)
25 & C[I] # Oo

26

27 ji=d

28 while ¢[j] not in DELIMITERS do
29 jo=j¥+1

30 od;

3 { A23..26
32 & isj<lastx+1

210 PRABHAKER MATETI AND JOXAN JAFFAR

33 & ¢[i..j—1] is DELIMITERS-free
34 & ¢[j] in DELIMITERS

35 }

36 if {=j then

37 dimtoken;

38 ji=j+d

38 else

40 stdtoken;

41 fi;

42 { nextx<j<lastx+1

43 & ¢t = TkNsEQ(e[nextx..j—11)
44 & TRNsEQ(c[nextx..j—1]I\bic[j.. lastx])
45 = TKNSEQ(c[nrextx ..lastx])

46 }

47 end program segment;

The proof of this program segment readily follows once we see that assertions
A23..26 and A431..35 hold at the stated points. That /< lastx in A23 follows from
c[lastx] #°, of entry assertion. Because c[last0]# %, and c[lastx+1] = % j may
indeed equal lastx+1 after the while-loop at line 28 terminates, as implied by 432.

If i=j, then c[f] is a delimiter, and d/mtoken (see line 37) would return with
t = TRN(c[f..i+d—1]) and d =1 or 2. After line 38, we get ¢t = TRN(c[i..j—1]).
If i<j, then nextx<i<j and stdtoken (see line 40) would return with
t = TN(c[i..j— 1]) Since c[nextx i—1] is all-white (from A24),
TKNSEQ(c[nextx .]— 1)) = TRkN(c[f..f—1]) = ¢t. Thus A42..43 hold.

Since c[nextx ..i—1] is all-white, in order to establish 444 .. 45, we need only show
that TkNSEQ(c[i..j—11i1\b\c[j .. lastx]) = TRNsEQ(c[i .. lastx]), i.e. that insertion of a
blank between c[y—l] and c[j] into the buffer will not alter the token sequences
produced. If c[i..j—1] were delimiter-free, c[j] must be a delimiter and inserting a
blank just before it does not matter. On the other hand, if ¢[{] were a delimiter, then
dimtoken has considered the largest possible token starting with ¢[i{] and hence once
again blank insertion to the left of c[f] does not alter the token sequence produced.
Thus 442..46 hold.

48 program segment dimtoken

49 of gettoken

50 { O<j<lastx

51 & c[f] in pELiMITERS — {\b, \t, \ €}

52

53 {,dy =

54 cases

55 =" . {SEMICOLON , 1);
56 cfl= "{" : {comBGN , 1);
57 cfil="}" : {COMEND , 1};
58 c=""" : {QUOTE nl);
59 cil1="" : {RPAREN 1

A CORRECTNESS PROOF OF AN INDENTING PROGRAM

211

60 cfl="=" {ORDINARY , 1);
61 cffl="e {ENDFILE , 1);
62 l=""" & c[j+1]="=" {ORDINARY , 2);
63 cfl=""" & cfj+1]"=" {coLON ls;
64 cfl="0" & c[j+1]="*" {coMBGN , 2);
65 cfl="0" & e[f+1]#"*" {LPAREN e
66 cil="*" & c[j+11="1" {coMEND , 2);
67 cljl="*" & c[j+1]#")" {ORDINARY , 1);
68 end cases
69 { (TeN(c[f..j+d]) is undefined
70 & d=1ord=2)
71 & t=T1rN([j..j+d—1])
72
73 end program segment;
74 program segment stdtoken
75 of getioken;
76 { i<j
77 & c[i..f—1] fs DELIMITERS-free
78
79 t:= (
80 case cff..j—1] of
81 "procedure" PROCEDURE;
82 “function" FUNCTION;
33 "program" PROGRAM;
84 "forward" FORWARD;
85 “repeat" REPEAT;
86 “record" RECORD;
87 “extern" EXTERN;
88 “ewhile' WHILE;
89 "until" UNTIL;
90 "label" LABEL;
91 “const" CONST;
92 “begin"' BEGIN;
93 “with" WITH;
94 "type" TYPE;
95 "then THEN;
96 “'goto’ GOTO;
97 “else" ELSE;
98 "case" CASE;
99 “oar" VAR;
100 "“for' FOR;
101 “end' END;
102 “of "' OF;
103 Y 1F;
104 "do'"! DO;

212

105
106
107
108
109
110

PRABHAKER MATETI AND JOXAN JAFFAR

other ¢ ORDINARY;
end case

{ t=TKrN(c[{..j—1]

end program segment;

Nexttoken. Nexttoken first checks to see if all characters of ¢[1 .. lastx] have been
processed. If so more input is read until a non-white line is obtained. If the first
character of ¢ is \\e this indicates an end of file condition.

Nexttoken then obtains the longest prefix c[nextx .. j— 1] of ¢[nextx .. lastx] such that
c[nextx..i—1] is all-white, and TkN(c[f..j—1]) is defined. It then updates nextx to j.
The returned token t equals TKN(c[i..j—1]) if it is not within a comment or a string;
otherwise ¢ will be ORDINARY unless TKN{c[{..j — 1]) = ENDFILE. In the assertions below

toDONE(ii, uu) stands for

input done so far = Input[1.. I14ii]

& Imput[II+1.. 1I+ii—1] are all white
& Imput[II+if] is not all white
& Output done so far = Output{l .. UU +uu]
& (uu=0
or uu>0 & mg =nmg
& Output[UU+1] =\b**M C[F..L]
& Output[UU+2.. UU+uu] = (\b** mg) **(uu—1)
).
111 function nextioken returns t;
112 var t, i, j, d;
113
114 { let F==fromx, T==tox, N == nextx, L == lastx, M == mg
115 & let C[0..L+1]==¢[0..L+1]
116 & let Input[l .. I} = = input done so far
117 & let Output[l.. UU] = = output done so far
118 & II>1-o¢[1]#e
119 & cbfINV(ID & lexINV(UU)
120}
121 tox ;= nextx—1;
122 while nextx > lastx do
123 printline;
124 readline;
125 tokenno : = 0;
126 od;
127 { let NI == the number of times lines 123 ..125 are executed
128 & (NI=0& F=fromx<tox+1=N=nextx<L+1=lastx+1
129 or NI>0 &1 =fromx=tox+1 = nextx <lastx+1
130 Y& ioDONE(NI, NI) & cbfINV(I1+ NI) & lexINV(UU+ NI)
131}

A CORRECTNESS PROOF OF AN INDENTING PROGRAM 213

132 gettoken;

133 nextx :=j;

134 tokenno = tokenno+1;
135 if t#ENDFILE then

136 cases

137 {ncomment:

138 if ¢ = coMEND then incomment : = false
139 else ¢t : = ORDINARY fi;

140 fnstring:

141 if ¢t = QuoTe then instring : = false
142 else ¢ : = orDINARY fi;

143 not (instring or incomment):

144 cases

145 { = COMBGN : tncomment .= true,
146 t = QUOTE: instring : = true;

147 other 1 (* do nothing *);

148 end cases

149 end cases;

150 fi;

151 { let NI == number of times lines 123 .. 125 are executed

152 & (NI=0& F=fromx<tox+1 = N<nextx<L+1=lastx+1
153 or NI>0 & 1 = fromx = tox+1 <nextx<lastx+1

154 & WoDONE(NI,NI) & cbfINV(II+ NI) & lexXINV(UU + NI)
155 & (5w =

156 FIRST(TKNSEQ(sZ | 5x), sw,5v)

157 }

158 end proc;

Consider 4127..131. We have from 4119 that cbfINV{II) holds. Thus if NI =0 (i.e.
lines 123 .. 125 were not executed at all), Input[1]] cannot be all-white. Because if it is,
N = nextx> L = lastx and NI must be greater than zero. Thus {eDONE((,0) and
hence 4127 ..131 hold trivially. On the other hand, if NI>0, 4129 must hold for all
the NT lines thus read. The first line output by this loop will be C[F#..L] and the
subsequent N/ —1 lines must be all-white. The loop must terminate because the last
line of every file is the pseudo-line which is not all-white and readline will let
nextx < lastx, and Input{II + NI] must not be all-white. Thus is DONE(NI, NI) holds.
That cbfINV(II+ NI) holds is guaranteed by the exit assertion of readline, and that
lexINV(UU+ NI) is true follows readily because we have lexINV(UU) at 4119,
Output[UU+1.. UU+NI) is all-white and 1 = fromx = tox+1 =nextx <lastx+1.
Hence A4127..131 hold.

We now show that {4127..131} lines 132..150 {4151..157}. In this part of the
proof, whether NI>0 or not does not matter, While A4128..129 imply that
tox+1 = nextx, A152..153 imply that now tox+ 1 <nextx. This essentially guaran-
tees that ‘progress’ will be made in every invocation of nexttoken. Without this,
nexttoken can trivially satisfy its exit assertion by doing nothing and returning the
previous token. That tox+1 <mnextx after line 133 follows from the exit assertion
(A42) of gettoken.

214 PRABHAKER MATETI AND JOXAN JAFFAR

That lexINV(UU+ NI) holds is immediate from 444 .. 45 and lines 134 .. 150, and
toDONE(NI, NI} continues to hold as our files are sequential. Since lines 134 .. 150
contain no calls to readline, cbfINV(II+ NI) still holds. From lexINV(UU + NI) and
noting that (i) just before execution of line 133 we have 443, (ii)
nextx = tox+ 1(fromA128 .. 129) and (iii} just after execution of line 133 nextx =j, we
get A155..157. This completes the proof of nexttoken.

3.2.2. newline, firsttokeninline and initlex
The following three procedures are self-explanatory.

159 procedure newline;

160 { A114..120, entry assertion of nexttoken
161 & let TN = = tokenno

162 }

163 if tokenno>1 then
164 printline;

165 tokenno 1= 1

166 fi;

167 { (TN>1& NU=1or TN<1& NU =0)

168 & {0DONE(0,NU) & cbfINV(ID} & lexINV(UU + NU)
169 }

170 end proc;

171 function firstiokeninline returns b;

172 var b;
173 { true
174

}
175 b .= (tokenno =1);
176 { bestokenno =1
177 }
178 end proc;
179 procedure initlex;
180 { c[0]#% & c[1]#\e
181 & no input has been done so far
182
i83 readline;
184 | exit assertion of readline & cbfINV(1)
185 }
186 end proc;

3.3. stk

This module implements a stack which is used by the main module. Note that the
ORDINARY token is never stacked, and stk safely uses {ORDINARY, 0) as a sentinel at the
bottom of the stack. We thus have the following property holding before and after every

A CORRECTNESS PROOF OF AN INDENTING PROGRAM 215

call to procedure of this module:
5[0] = {oRDINARY, 0)

& O<p<spMAX

& (seT(s[1..p].thn) N {oRDINARY}) = (.
T'he main program uses the stack in such a way that a certain invariant stkINV to be
given later is a loop invariant of main.

We believe the proofs of the five procedures below are straightforward and hence

omit them.

0 module stk; (*implements a stack *)
1 const pMAX = ... {pMAX>0}
2 var ’
3 pi—1..pMAX+1;
4 s:array[0.. pMAX] of (thn: token, mgn:margin);
5 initially
6 s[0] : = {ORDINARY, 0);
7 p:=0;
8 procedure stack(i:tloken, m:margin);
9 { let P==p, S[0..Pl==5[0..P]
10
1" if (t#0RDINARY & p <pMAX) then
12 pi=p+1;
13 s[p] := {¢,m);
14 fi

15 [s[0..P]=S[0..P]

16 & (p=P+1 & s[p] ={t,m)

17 or p=P & (P=pMAX or t = ORDINARY)
18)

19 end proc;

20 procedure unstack;

21 { let P==p, S[0..P]==5[0..P]

22

23 ifp>0thenp:=p—1Hf

24 { P=0-s0..p]=S[0..P]

25 & P>0-50..p] = S[0..P-1]

26 }

27 end proc;

28 procedure stktop (var t: token, var m: margin);
29 { let P==p, S[0..P] ==3[0..P]

30 }

31 {t,m> :=5[p];

32 { <t,m)=S[P]

33

34 end proc;

35 function stackhas(sot : set of token) returns b;
36 var g, b;

216

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

{
}
q

PRABHAKER MATETI AND JOXAN JAFFAR

let P==p, S[0..P]==3[0..p]
hile ,s[q] . tkn not in (sot U {ORDINARY}) do
g:=q—1
od;
b:=(g>0)

{ b (sot nseET(S[1..p). thn)# D)

end proc;
procedure unstackuntil (

sot : set of token,
var m margin),
var t,

{ let P==p, S[0..P] ==s[0..P]

repeat
(t,my 1= s[pl;
pi=p—1

until (¢ in sot U {ORDINARY});

if p<0 then p := 0 fi;

{ sev(S[p+2..P].thn}nsot =0

& (p=20& S[p+1].tknin sot & m = S[p+1].mgn
orp=0 & m=0 & (P=0 or S[1] not in sot)
)}

end proc;

procedure unstackwhile(

sot: set of token;

var m: margin);
var
{ letP==p, S[0.Pl==5[0..P),M==m
& ORDINARY not in sot

}

while :[p]. thn in sof do
m = s[p].mgn;
p:=p—1

{ p=P-m=M

& p<P-—

(seT(S[p+1..P).thn)=sat
& S[p]. thn not in sot

Note that unstackuntil unstacks at least one item whereas unstackwhile unstacks as long
as the top item is in the given set,

A CORRECTNESS PROOF OF AN INDENTING PROGRAM 217

3.4. Program indent

This module contains the so-called ‘main’ program indent which controls all other
procedures either directly or indirectly. We first consider the following important
segment of the program.

3.4.1. calcredcnmg

Program segment calcredcnmg computes the indentations resulting from the current
token t and updates the variables cmg and nmg. These two variables respectively take
the cMG and NMG values of the token sequence of the input file so far seen. It also
maintains on the stack the reduced token sequence. (See Reference 1 for the
definitions of NMG, cMG and REDuced token sequences.) In the assertions

stkINV(T) stands for

s[1..p]. thn = reD(T)
& s[].mgn = nMmG(s[1..1—=1].thn) for all i, 1 <i<p.

where T is a token sequence.

0 program segment calcredcnmg
1 of main;
2 var 10, t1, m0, ml1, n, sot;
3 { stkINV(T)
4 & comg = nmg = nmc(T)
D 1
6 {:ase t of
7 PROCEDURE,
8 FUNCTION,
9 PROGRAM,
10 LABEL,
11 CONST,
12 TYPE,
13 VAR:
14 stktop(t0, m0);
15 if 10+ LPAREN then
16 if 10 # pecL then stack(DECL, nmg)
17 else emg := mng : =m0 fi;
18 nmg 1= nmg+ UGI,
19 if ¢ in {PROCEDURE, FUNCTION, PROGRAM} then
20 stack(PF, nmng)
21 fi;
22 fi;
23 OF :
24 stktop(t0, m0);
25 unstack;
26 sthtop(tl, ml);
27 if (10 = coLon & t1 = casE) then cmg:= nmg := ml1+ UOI
28 else stack(t0, m0) fi;

29 BEGIN

218

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

PRABHAKER MATETI AND JOXAN JAFFAR

stktap(t0, m0Y};
if 10 = pecL then
unstack;
cmg = nmg 1= m0
fi;
sthtop(t0, m0);
if {0 = pF then
unstack;
cmg = nmg 1= m0
fi;
stack(t, nmg);
END:
if stackhas({rRecorD}) then
sot := {RECORD}
else sot : = {BEGIN, cask} fi;
unstackuntil(sot, nmg),
cmg 1= nmg,;
RPAREN
unstackuntil({LPAREN}, nmg);
cmg 1= nmg,
LPAREN,
REPEAT,
CASE,
DO,
THEN,
RECORD,
COLON
stack(t, nmg);
nmg = nmg + UOI,
UNTIL
unstackuntil({REPEAT}, nmg);
omg 1= ming;
ELSE
unstackuntil({THEN}, cmg);
nmg = cmg+ UOI,;
stack(t, emg);
SEMICOLON
unstackwhile({THEN, ELSE, DO, COLON}, nmg);
cmg 1= nmg,;
other
(* do nathing *),
end case;
StRINV(To D)

{
& nmg =nNmg(Tot) ..
&

}

cmg = cmc(T o)

nd program segment;

A CORRECTNESS PROOF OF AN INDENTING PROGRAM 219

The proof here is mechanical since it ‘executes’ the definitions of RED, NMG, and cMG
literally, Two sample proofs are given below; others are similar.

Case t = PROCEDURE. The stkINT in the entry assertion implies that 10, after
execution of line 14, is the last token of rep(T).

Suppose now that t0 = LPAREN. Then RED(7T o PROCEDURE) = RED(T) by definition,
and the stack, emg and nmg remain unchanged, thus establishing the exit assertion.

Suppose 10 # LPAREN. Suppose further that 10 = DEcL (and hence ¢ is a token from a
nested procedure); i.e. s[1..p].tkn = RED(T) = RopecL for some R. Then by the
assignment cmg ;= nmg := m0 and stkINV(T} in the entry assertion, we have that

cmg = nmg = m0 = NMc(s[1.. p—1]. thn) = NMG(R).

Execution of line 18 then sets nmg = NMG(R)+ UQI and after line 21, the
stack contains R o DECL o PF = RED(T 0 PROCEDURE) as defined thus establishing
stkINV(Tot). Also cmg now equals

nmg— UOT = NnM6(T 0 t)— UOI = cMmc(T o 1),

as defined. Thus 472 ..75 hold.
A similar proof is given if t0# DECL.

Case t = UNTIL. The stkINV(T) of the entry assertion implies that after execution of
unstackuntil (line 60) s[1..p]. thkn (call this Q) will either be 00, if rRep(7T) did not
contain any REPEAT tokens, or O will be such that Rep(T) = Q o REPEATO0 R and R
contains no REPEAT tokens. Clearly stkINTV(T o t) is established. Since nmng = nmMc(Q)
by unstackuntil and line 61 sets cmg = mng = NMG(Q) = NMG(RED(T o #)) = cmG(T o ¢)
as required by the definition of cMG, we have 472..75.

3.4.2. main
Control is passed to main after the initializations in the modules are performed. The
main program employs lex to give it the token sequence corresponding to the input
text. Observe that in the body of the repeat-loop there are no calls to the module io. All
input/output of text is caused indirectly by calls to the procedures of module /ex.
To understand the assertion indINV{ni, nu) below more readily see Figure 2.
"The assertion indINV(ni, nu) of the program below stands for:

sz = INDENT(Input[l .. ni—1] sy)
& {t,sw) = FIRSTTKN(TKNSEQ(sS sx), sw | sv)
& cbfINV(ni)
& lexINV ().

Also let segINV(st) stand for
st = FIRSTSEG(TKNSEQ(s=2), 51),
and let mgnINV(su) stand for

nmg = cmg = NMG(TKNSEQ(su)}) & mg = MG(SEGSEQ(su}).

Intuitively, the first predicate of indINV asserts that the output so far is the indented
version of the input done so far, segI NI asserts that st does not contain more than one
segment and mgnINV asserts that the margin variables are correct. Note that in the

220

PRABHAKER MATETI AND JOXAN JAFFAR

following, the value of ¢mg is important only when the previous token starts on a new
line when mg takes cmg’s value (line 114) as required by the definition of Mc.

77 program indent;

78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93
94

95
96

97
98
99
100
101
102
103

104

105
106
107

108
109
110
111
112
113
114
115

116

117
118

const
Uor=..,; (* unit of indentation *)
LO = } h {ENDFILE not in LO}
LCm=1{i:. }; {ENDFILE not in LC}
var
m0,
mg,
omg,
nmg : margin;
t, 10 : token;
carry : boolean;
initially

mg 1= cmg :=nmg 1= (;
carry ;= false;
{ next line to be read is Input[1]
& next line to be output becomes Output[1]
& indINV(0,0) & segINV(sx sw) & mgnINV(sz sx sw)

}
initlex;
repeat
{ let Input[1..II] = = input done so far
& let Output[1.. UU] = = output done so far

& let SZ==352, SX==sx, SW==sw
& idINV(II, UU) & segINV(sx sw) & mgnINV(sz|sx|sw)

}

t := nexttoken;
compute-red-cnmg:
{ mdINV(II+NI, UU+NI) & segINV(sx) & mgnINV{(sz | sx)

calcredenmg,

{ mdINVUII+NI, UU+NI) & segINV(sx)
& wmg = NMG(TKNSEQ(sz sx,sw))

& cmg = cMG(TKNSEQ(sz | sx|sw))

& mg = mo(ss(sz sx))

if ¢t in LO then newline fi;

if firsttokeninline then mg : = cmg fi;

cmg 1= nmg,

{ mdINV(II+NI, UU+nu) & segINV(sx sw)
& mgnINV (sz!sx|sw)

& nu= NIl+ord(tin LO)

!

A CORRECTNESS PROOF OF AN INDENTING PROGRAM 221

119 if t in LC then

120 t 1= nexttoken,

121 while ¢ = comBgN do

122 repeat

123 t := nexttoken

124 until ¢ in {COMEND, ENFILE};
125 if ¢t # ENDFILE then ¢ : = nexttoken fi;
126 od;

127 newline;

128 goto compute-red-cnmg;

129 fi;

130 until ¢ = ENDFILE;

131 outputchar(’e);

132 { last line is read

133 & let Input[l..J¥) = = input done so far

134 & let Output[l.. KK] = = output done so far
135 & mdINV(}Y, KK)

136

137 end program;

The proof below depends on the function stGseQ that produces segment sequences
form input lines and on the function MG that determines the margin of output lines
corresponding to these segments. We shall make use of the fact

{ SZ=1npenT(Input[l..ni—1],8Y)
& mg = Mc(seGsEQ(SZ SX)) & segINV(SX)

printline
{ sz = output done so far = INDENT(Input[1..ni—1]1|SY!8X)}.

Further note that in the following, N/20, NU=0 and MI>0.

We perform the proof of {492..95} lines 96..131 {4132.. 136} in five parts, the
last part being a termination proof.

(1) The first part is {498.. 102} line 103 {4105..106}. Firstly note that 498 ..102
implies the entry assertion of nexttoken.

Case NI = 0. No output is done and so sz = SZ and sz = INDENT(Input[1 .. II]|sy)
continues to hold from 4101. Now sx = SX|SW by the exit assertion of nexttoken,
and SX | SW = rs(TkNsEQ(sz), SW SW) from segINV in 4101, Thus segINT (sx)
holds. Again since sz sx = SZ|SX| SW, mgnINV{(sz sx) holds from mgnINTV in A101
since nmg, cmg, mg and the stack are unchanged.

Case NI>0. The predicate ieDONE in the exit assertion of nexttoken and
mgnINV(sz sxisw) in A101 imply that sz = iNpENT(Input[1 .. [T+ NI]!sy) holds.
Now both sy and sx are actually empty as implied by A153 of nexttoken, and so
segINV(sx) holds trivially. Since TKNSEQ(sz|sx) = TKNSEQ(SZ|SX|SW) again by
ioDONE in the exit assertion of nexttoken and because the stack is unchanged,
mgnI N1V (sz!sx) holds.

222 PRABHAKER MATETI AND JOXAN JAFFAR

In both cases, cbfINV(II+NI) & IlexINV(UU+NI) & (t sw) = FIRSTTKN
(TKNSEQ(sz 5x), sw|sv) follow from the exit assertion of nexttoken. Thus indINV
(IT4+ NI, UU+ NI holds, and hence again A105.. 106 holds.

(2) By letting TKNSEQ(sz ' sx) be the T in the entry assertion of calcredcnmg, we have
the second part {4105 .. 106} calcredcnmg {A108..112}.

(3) The third part is {4108 .. 112} lines 113..115 {4116.. 118}. Note that at 4108,
sx is either empty or it is SX, SW.

Case t in LO. Suppose sx = SX, SW. By the definition of secseQ, seg/NV{(sx) holds
whereas segINV (sx | sw) does not. From mg = MG(SEGSEQ(sz5x)) of A111 and ioDONE
in the exit assertion of newline, we get sz = INDENT(Jnput[1 .. IT+ NI] sy). Again by
this exit assertion, chf INV(II+ NI) and lexINV{UU + NI+1) holds. Since (¢, sw) is
unchanged, segINV(sx|sw) holds, again because sx is empty. At this stage

nmg = NMG(TKNSEQ(s2 | sx | sw)), cmg = CMG(TKNSEQ(sz | sx | swv))

and stkINV(TKNSEQ(sz |sx|sw)) continue to hold since nmg, cmg and the stack are
unchanged; however, mg is yet to be set correctly.

The then body of line 114 must be executed because as a result of newline,
firsttokenline must return true. It is here that we now get
mg = cmg = CMG(TKNSEQ(sz sx,sw)) and this is MG(SEGSEQ(sz | sx | sw)) by definition.
We thus get A116..117 after execution of line 115.

A similar argument suffices if we had assumed above that sx were empty and not
SX!SW. Note that nu in 4116 is NI+1 in the former case and NI in this one. Thus
nt = NI+ord(t in LO) using the ordinal function of Pascal.

Case t not in LO. Line 110 has no effect and since indINV continues to hold, mg is
cmg = CMG(TKNSEQ(sz . 5x | sw)) from the then body of line 114, which is executed if
and only if sx were empty; on the other hand, if firsttokeninline were false, then
segINV(sx|sw) and ¢, sw) = FIRSTTKN(TKNSEQ(sz | 5x), sw,sv) ensures that mg remains
at MG(sEGSEQ(szsx)) which by definition is MG(SEGSEQ(szisx sw)). Once again
A116.. A117 holds after execution of line 115,

(4) The proof of the fourth part {4116..117} lines 119..128 {A4108..112}
proceeds along similar lines as that of line 113.

Suppose tis notin LC at A116..117. Then either ¢ is ENDFILE, in which case the exit
assertion A132..136 immediately follows from A116, or we loop, in which case
A98 ..102 follow from 4116 again (but with appropriate new values for I1, UU, SZ,
SX and SW).

Suppose ¢ is in LC at A116..117. Then clearly lines 120..126 call nexttoken
repeatedly so as to get the token immediately following t of 4116 that is not within a
comment, or until nexttoken returns an abrupt occurrence of ENDFILE. Since the exit
assertion of any previous call implies the entry assertion of the next call, and since
lexINV holds at 4116 and throughout this repeated calling of nexttoken, all the tokens
thus returned belong are in {COMBGN, COMEND, ORDINARY} except the very last one
returned.

It is easy to see that indINV(II+ NI+ MI, UU +nu+ MI) holds after execution of
line 126 because if MI>0, then it must be due to the cumulative effects of the NI in
ioDONE in the exit assertion of nexttoken which at some times must have been non-

A CORRECTNESS PROOF OF AN INDENTING PROGRAM 223

zero. Let SX0 and SWO be sx and sz respectively at 4116 so that segINV(SX0 SWO0)
holds there. Now any string st that is a (string of) comments is such that
SEGSEQ(sX0,sw0 st) is one segment unless st contains ‘n. In the latter case, let
st = sul'\n su2 where su2 does not contain any . It then follows from indI NV that
sx = su2. Since su2 contains only tokens as mentioned above, segI NV (sx) holds. That
mgnINV(sz sx) holds is straightforward since the tokens coMBGN, cOMEND and
ORDINARY have no effect on mmg, cmg, mg and the stack.

It now remains to show that 4105 .. 106 holds after a call to newline in line 127. The
proof here is almost identical to that in line 113 where sEGSEQ(sx) holds but
SEGSEQ(sx | sw) does not.

After execution of lines 127..128, 4105 .. 106 hold with the values of I7+ NT and
UU+ NI, respectively, replaced by the new values I+ NI+ M1 and UU+nu+ MI.
This concludes the proof of the fourth part.

Initially 498 ..102 hold, i.e. at the first time execution enters the repeat loop, since
II'is 1, UU is 0 and sz, sx, and sw are empty. This concludes the proof that
{A92.. 495} lines 96..131 {A4132..136}, with the proviso that the program
terminates.

(5) It now remains for us to prove that the program terminates. We do this by
showing that sz sev increases after every execution of nexttoken. Hence by the
finiteness of the input file, we are done.

We see that either 4152 or 4153 of nexttoken must hold. If 4153 holds, then sz is
increased and sx is empty. If A152 holds, since nextx> N (where N is the value that
nextx had at the entry assertion of nexttoken) and tox+1 = N, only sx has increased.
We show now that at least one call to nexttoken will be made between any two
executions of line 1135: after execution of line 115, if ¢ is in LC, line 120 implies this;
otherwise, the goto at line 128 is not executed and so line 103 ensures this.

Clearly the loops in lines 121 .. 126 always terminate implying that only a finite time
will be spent after execution of line 115 before execution reaches it again, or reaches
line 131. This compietes the termination proof.

4. DISCUSSION

Although it was more than a decade ago that foundations of correctness proofs were
laid by Floyd, Naur and Hoare (see e.g. Reference 5), one cannot say with conviction
that a correctness proof technology has now emerged. The ratio of programmers who
practice giving correctness proofs to those who do not is negligibly small. The reasons
for this phenomenon will be long debated. We have the suspicion that one cause for
this has been the high level of rigour and formalism in the example proofs of pioneers
like Dijkstra, Hoare and others (see e.g. References 6 and 7), and a shortage of
examples of proofs at the intermediate levels of rigour.

It is widely recognized that competent programmers adopt certain paradigms
familiar to them when designing programs. They are forever searching for newer or
different paradigms to add to their collection. Such practices should be encouraged
(see e.g. Reference 8) as principles of systematic design. Although we can say that
these do exist—however few they may be—in the context of designing programs,
paradigms and styles for assertions and proofs of classes of small programs are yet to
emerge. What little exists is buried deep beneath heavy notation and formalism or
rigour. And the correctness of correctness proofs has become exceedingly important,

224 PRABHAKER MATETI AND JOXAN JAFFAR

Also, the main goal in the published correctness proofs has generally been to establish
the correctness of the program being considered rather than establishing the essence
of the proof, exploring what level of rigour is appropriate and the selection of the best
way to structure and present a proof.

We are aware of many conscientious programmers who do use reasoning, in
addition to testing, to convince themselves and other sympathetic people that their
programs work, These programmers and the published literature shied away from
documenting such efforts extensively mainly for two reasons: (1) their informal
notation and arguments cannot be taken as proofs ‘beyond all doubt’ that the program
in question meets its specifications, and (2) their methods have nothing original—they
travel the road paved by Floyd and Dijkstra. In spite of these reasons, we believe that
the programming community will benefit if such efforts are documented widely. Such
efforst will (1) demonstrate to a wide audience the usefulness of ‘reasoning’ as against
testing, and (2) reduce the effort required to produce these correctness arguments as a
result of the experience gained both by the authors and readers.

The present paper is intended to be one such effort, and we urge the reader to lower
his expectations of the possible benefits from proofs (of the kind advocated here) to a
modest and realistic level. We should not expect proofs of this kind to establish
‘beyond all doubt’ that the program meets its specification. We should be content if all
such a proof does is to raise the confidence level with which we say that it is plausible
that the program is correct.

We do not claim that we have been entirely successful in achieving all our
objectives. What is most disconcerting is that an estimated total of 250 man-hours
were spent in discovering the assertions, choosing the right notation and the style of
presentation. In contrast, we estimate that a total of only 60 hours were spent in the
design, implementation and testing of all three versions of the program developed
during the proof process. We believe that this figure would have been considerably
lower if we had other example proofs (at this level of rigour) of medium-sized
programs to emulate,

Below we discuss some of the issues that must be understood before assessing the
approach taken in the proof of indent.

4.1. Pitfalls

As Gerhart and Yellowitz® point out, modern methodologies are not infallible.
When the level of rigour is decreased, this danger further increases.

Hidden assumptions

The most serious of all dangers in informal and less rigorous proofs is that incorrect
programs may be ‘proved’ correct as a result of hidden assumptions in the minds of
both the author and the reader of such proofs. (For a related discussion see Reference
10.) Neither may be aware of such assumptions and hence neither foresees the
possibility that an occasional hidden assumption may indeed be invalid. Hidden
assumptions can go unnoticed for a long time. Only the diligent reader can tell us if we
are guilty of hidden assumptions in the proof above.

Ambiguity and imprecision
Appropriately chosen high-level notations can be very helpful by supporting our
intuitive understanding of a sentence. A notation such as ¢[f..j] = % **m is no less

A CORRECTNESS PROOF OF AN INDENTING PROGRAM 225

precise nor is it less unambiguous than the first-order formula

(m<0 & j<i)

or

(m=j—i+1

&

VR(ISk<j— (c[k] =\b or c[k] =\t or c[k]) =\n))
).

But since the notation is in an informal and incompletely specified language both
imprecision and ambiguity can result (for instance in the interpretation of various
operators, and their precedence). Although we do not claim that our notations of
programming language and of the language of assertions cannot be improved further,
we do claim that there is no loss of precision or of unambiguity.

Wrong inferences

The possibility of incorrectly inferring from known facts exists in all proofs be they
of programs or of mathematical theorems. Increasing the formalism and decreasing
the ‘quanta’ of inference in each individual step makes it possible to check them
mechnically. This is extremely tedious for humans, and not yet practical for
computers. We regard wrong inferences as being less serious than hidden assumptions
as one’s colleagues are more likely to bump into the latter.

4.2. Some technical issues

Our informal way of proving raises some technical issues among which we briefly
mention two:

Forward substitutions

In our proofs of { P} lines i .. {0}, our arguments were of the form ‘assume P is true
and consider lines 7..;j whose execution results in such and such changes finally
resulting in Q being true’. This technique, known as symbolic execution, is a variation
of forward substitution.!! Forward substitutions performed formally are of the form

{P(x}}
x 1= exp{x)

FX(PX) & x=exp(X))}

where P is any property and exp any expression involving the variable x. Intuitively,
X is the value of x just before the execution of the assignment. Clearly by continuing
this process for a large program such as ours, an uncomfortably large number of
existential quantifiers will be produced.

We have avoided this problem by saving the old value of (in this case) x by our
binding mechanism ‘let X = = x’. Thus no existential quantifiers are required because
we can now write

{le X==x & P(x)}

x 1= exp(x)

{P(X) & x= exp(X)}.
While backward substitutions are more common in formal proofs, we have chosen
forward substitutions which are more intuitive being close to (symbolic) execution.

226 PRABHAKER MATETI AND JOXAN JAFFAR

Procedure calis

The formal rules available in current literature for handling procedure calls are
weak. In our proofs, we have regarded most of them as simply macro-calls. This is
quite reasonable since (i) all actual parameters are distinct, (ii} all parameter variables
are local to the procedure and (iii} all updating of global variables in a procedure is
explicitly asserted.

5. CONCLUSION

The rigour with which a proof may be given varies, and the conjured up expectations
differ markedly. We have given here a proof at an intermediate level of rigour of an
indenting program for Pascal. It is more convincing than hand-waving and much less
formal than, say, first-order logic-like proofs. We do not claim that our proof
establishes beyond doubt the correctness of the program. Our objectives would have
been served if the reader’s confidence in the program matches that which he may have
had after considerable testing of the program. Speaking from personal experience, we
can say that our own understanding of the program increased markedly and we have a
better insight of the problem and the lapses of lexical structure of Pascal. We sincerely
doubt if this level of understanding and insight would have been possible by elaborate
testing.

REFERENCES

1. P. Mateti, ‘A specification schema for indenting programs’, Software—~Practice and Experience, 13,
163-179 (1983).

2. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Pitman and Computer Science
Press, 1978.

3. P. Mateti, ‘Documentation of a program indent: a model for the complete documentation of
computer programs’, Technical Report (forthcoming), Department of Computer Science, University
of Melbourne, Australia, 1980.

. R. C. Linger, H. D. Mills and B, 1, Witt, Structured Programming: Theory and Practice, Addison-
Wesley, Reading, Massachusetts, 1979.

. Z. Manna, Mathematical Theory of Computation, McGraw-Hill, New York, 1974,

. E. W, Dijkstra, ‘Formal techniques and sizable programs’ , in K. Samelson (ed.), E.C.I. Conference
1976, Lecture Notes in Computer Science # 44, Springer-Verlag, 1976.

7. E. W. Dijkstra, ‘A more formal treatment of a less simple example’, in F. L. Bauer and M. Broy
(eds.), Program Construction, Lecture Notes in Computer Sciences # 69, Springer-Verlag, 1976.

. R. W. Floyd, ‘The paradigms of programming’, CACM, 22(8), 455-460 (1971).

.'S. Gerhart and L. Yelowitz, ‘Observations of fallibility in applications of modern programming
methodologies’, IEEE Transactions on Software Engineering, SE«2(3) 195-207 (1976).

10. 1. Lakotas, Proofs and Refutations: The Logic of Mathematical Discovery, Cambridge University

Press, 1976.
11. J. A. Darringer and]. C. King, ‘Applications of symbolic execution to program testing’, Computer,
11(4), 51-59 (1978).

S

[= ¥

WO oo

