
Rigorous Design Documentation of Knuth’s
Solution to the Common Words Problem

Prabhaker Mateti
Department of Computer Science and Engineering

Wright State University
Dayton, Ohio 45435

pmateti@wright.edu (937) 775 5114

CONTENTS

I Introduction 1
I-A Goals of this Paper 1
I-B On Design 1

I-B1 Vertical Refinement 1
I-B2 Horizontal Decomposition . . 1
I-B3 Rigorous Description of

Software Designs 1
I-C Structure of the Paper 2

II The Common Words Problem: Spec 2
II-A What is Text and What are Words? . . 2
II-B Occurrences of a Word 2
II-C Alphabetically Sorted 3
II-D Word-Nat Pairs 3
II-E k Most Frequent Words 3
II-F Input File of Text 3
II-G Output File of Text 3

III CWP Designs 3
III-A Design D0 with a Generic Container of

Words 3
III-A1 Module cow 3

III-B Mapping Input Text to Words 4
III-B1 nextlexeme: A Spec 4
III-B2 nextlexeme: A Design 4
III-B3 Module lex 4

III-C Design Levels 4

IV Bag of Words 4
IV-A Design D1 Using a Bag of Words . . . 4
IV-B Design D1 is a model of D0 5

V Dictionaries 5
V-A Tables v. Dictionaries 5
V-B Design D2 Using Tables 5
V-C Mapping a Bag of Words to a Dictionary 5

VI Word-Nat Pairs Sorted on Spelling 5
VI-A Design D3 Using Word-Nat Pairs . . . 5

VII N-ary Trees 6
VII-A Search for a Word 6
VII-B Design D4 Using N-ary Trees 6
VII-C N-ary Tree to Bag of Words 7

VIII Tries 7
VIII-A The trie 7

VIII-A1 Nil ID and Root ID 7
VIII-A2 The Children are Ordered . . 7
VIII-A3 Parent is Unique 7
VIII-A4 Search for the Word in a Trie 8

VIII-B Tries with Rings 8
VIII-B1 Insert New Word 8
VIII-B2 Word from Trie 8

VIII-C Design D5 Using Ringed Tries 8
VIII-D Frequency Sorting of the Words 8

VIII-D1 Find Frequent Words 8
VIII-D2 Preparing to Dispense with

FOQ 9
VIII-E Design D6 Using Ringed Tries but

Without FOQ 9

IX Hash Tries 9
IX-A Cell-Ids Refined 9
IX-B Reading a Word from the Hash Trie . . 10
IX-C Initial Hash Trie 10
IX-D Search of a Word 10
IX-E Insertion of a Word 10
IX-F Sorting the Words by Frequency 11
IX-G Design D7 Using a Hash Trie 11

X Related Work 11
X-A Open Source Projects 11
X-B Rigorous Description of Software Designs 11

XI Evaluation 12
XI-A Critique of Knuth’s Solution 12
XI-B Why is it this long? 12
XI-C ÔM, Our Design Language 12

XII Conclusion 12

LIST OF FIGURES

1 Example n-ary tree 6
2 Example Plain Trie 7
3 Example Trie with Rings 8
4 Example hash trie [Bentley 86](p 479) 10

[Draft Revised 2018/09/29. It even includes notes to self!]

pmateti@wright.edu

1

Abstract—We document the design of Knuth’s solution to the
Common Words Problem (CWP) as an example of how the
designs of intricate programs might be presented using rigorous
justification. The CWP and Knuth’s solution use data structures
known as dictionaries, and hash tries, and notions such as lexical
structure. These have been the main source of ambiguity. We give
precise definitions for all these in a design specification language
called ÔM. We explicitly define all our objects and also exhibit
the design hierarchy that we were able to reverse engineer from
his solution.

I. INTRODUCTION

We have [Knuth 84] suggesting that program devel-
opment and documentation be treated as ‘literate pro-
gramming’, and has contributed several examples, both
large (TEX[Knuth 86a], Metafont [Knuth 86b]) and small
([Knuth 84] and [Bentley 86]). The tradition pioneered by
[Kernighan and Plauger 76] is continued in such books as
[Comer 84], [Tanenbaum 87], [Wirth and Gutknecht 92] and
[Fraser and Hanson 95], which include complete listings of
source code, along with cogent explanations of why they
work. These are impressive accomplishments. But all the
ebove examples neglect to emphasize design descriptions, and
concentrate on implementation details.

There is a fundamental difference between Knuth’s ex-
amples, and the books by others mentioned above. Knuth’s
examples are meant for peers to read, understand and evaluate,
whereas the above books are for students to emulate and learn
the programming techniques. The designs of Knuth’s examples
get buried in a myriad of implementation surface details. The
descriptions in the other books are too imprecise.

There are now a large number of large open source
projects, with thousands of pages of documentation, but
with hardly any design descriptions. [Lenberg et al. 2015]
[Salman et al. 2015] [FM 2018]

A. Goals of this Paper

CWP was solved by that grand master Knuth himself as an
example of literate programming and as an example usage
of WEB. Knuth’s solution had served its purpose. In fact, its
reviewer McIlroy found “... Knuth’s program convincing as a
demonstration of WEB and fascinating for its data structure.”
The complexity of that fascinating data structure, called the
hash trie, was a major osbtacle in its understandability. On
the other hand, thanks to this complexity, Knuth’s program
provided enough material for the WEB system in describing
“real” and complex systems. An alternate solution to the CWP
was given by Hanson [Van Wyck 87].1

Our goal is not to do yet another literate programming
example, but to focus on ”design.” What should design de-
scriptions of software contain? How should they be organized?
These two questions are implicilty answered, for the CWP
problem, by the material of this paper and its organization.
We convey our concerns for the precise expression of software
designs by reworking the CWP.

This paper deals with the expression of the design ideas
already present in Knuth’s solution to the CWP. It does not take

1lecture I watched on video has a good summary.

sides on the question of whether hash tries are too complex
a solution to be used for simple problem such as CWP. If
hash tries are indeed appropriate in a situation, and a designer
chose to use them, how should the concept of hash tries and its
incorporation into the solution be presented is what this paper
deals with. Our goal is to explain the design with precision.

B. On Design

A design document captures the end result of having de-
signed something. The decomposition of the given problem
into subproblems, and “judging” the effectiveness of the
decomposition, the previous approaches to similar problems
that the designer considered — all these must be recorded. In
the long run, other designers can benefit from such clarification
and cataloguing of design principles, and greater understand-
ing of the structure of design descriptions.

A design is a plan of realizing an object from given
primitives, materials and environment while meeting its spec-
ifications. A software design is a “program” written in an
appropriately chosen language. A software specification and
design needs to be captured in machine processible form.
Since design documents are meant for humans also, it is
equally important to include natural language descriptions of
the formal objects manipulated in the design.

1) Vertical Refinement: At the highest level, a software
design can be (ought to be?) state-free and highly declarative.
Intermediate level designs will look similar to programs in a
procedural language, but manipulate abstract data types such
as sets, bags, and tables. At the most detailed level, our designs
are “only a step away” from a modern programming language.

The levels are based on abstraction. As to when something
is abstract or concrete is ultimately a subjective matter, but
it is based on the architecture of the target computer and
programming language. Also, abstraction is not an either-
you-have-it-or-you-don’t item. We call the process of adding
detail to an abstract thing to make it more concrete vertical
refinement. Reification is an alternate term that [VDM] uses.

2) Horizontal Decomposition: We call the splitting of the
given problem into subproblems, and grouping the internals of
each subproblem horizontal decomposition giving us modules.
A design module describes

• compositions of parts
• functionality of parts
• data structures + their properties
• algorithms + their properties
• reasons for design decisions made
• perceived “good” (possibly “unprovable”) properties
3) Rigorous Description of Software Designs: The problem

and Knuth’s solution use structures that are known as dictio-
naries, and hash tries, and notions such as lexical structure.
These have been the main source of ambiguity. We give
precise definitions for all these. Natural languages, and so-
called pseudo-code are unsuitable.

It is important to note that our definitions of these structures
are not only precise, and rigorous but also formal. Most
definitions in combinatorics and algorithms books, including
those of Knuth, are informal.

2

We write these definitions in a software design language,
named ÔM, which is as “formal” as a typical programming
language is these days. We minimally describe the notation
and semantics of ÔM as needed. Full details of ÔM are given
in [Mateti 2018].

C. Structure of the Paper

This paper is organized into three parts. Section 2 clarifies
the description of CWP by providing a set of precise defini-
tions, which remove the ambiguities from the original informal
specification of the structure of the input. Section 2 covers all
that is needed to precisely describe the lexical structure of the
input.

Section 3 of the paper presents background “design knowl-
edge” appropriate for the description of Knuth’s solution to
CWP. It defines objects such as dictionnaries, tries, hash tries,
and some function representations used in the solution of CWP.

Sections 4 – 8 are the third part of the paper dealing with the
actual design specification. It presents a hierarchy of designs,
each described at a different level of abstraction. It also
describes the interrelationship between two successive designs
in the hierarchy. Also, along with the increasing level of detail,
more concrete representation of the abstract objects used in
the early design are progressively introduced. Thus, the first
design in the hierarchy uses a table as the representation of the
dictionary, describes input/output relationships, and assumes
the natural number k to be some value. The second design also
uses this representation of the dictionary; however, it provides
a more more operational view of the designs by explicitly
expressing how one obtains the output from the input in a
more constructive fashion.

Finally, there is an overall evaluation of the design example.

II. THE COMMON WORDS PROBLEM: SPEC

The June 1986 Programming Pearls column [Bentley 86]
posed the following problem:

“Given a text file and an integer k, print the k most
common words occurring in the file (and the number of their
occurrences) in decreasing frequency.”

We refer to this statement as the Common Words Prob-
lem(CWP), and the desired program as cwp.

As posed, the CWP problem is imprecisely stated. For
instance, it is not clear what sequences of characters constitute
valid words, whether a mere difference in character cases
makes two words to be considered different, how the integer
k is to be input, what to do if the input file contains less
than k words, more than k words occur all with the same
frequency, or if k is negative. Nothing is said about the format
of the output. Many of these points have been raised by David
Hanson (as reported in [Van Wyck 87]). We make the problem
statement more precise by resolving these issues in the next
section.

Some would point out that a “precise” specification is not
possible to express in any natural language. True as this
may be, we quickly understand, roughly perhaps, the details

when explained in a natural language using well-accepted
technical terminology, and defining our new terms. It is worth
remembering the points made by [Meyer 85].

A. What is Text and What are Words?

A text is a sequence of characters. A line is a non-empty
sequence of characters such that the last character is a newline,
and no other character in it is a newline. A text file is an
association of a file-name with a file-content. The file-content
must be text. A word is a non-empty sequence2 of letters,
upper or lower case. 3

value upletter: set char := {’A’..’Z’};
value loletter: set char := [’a’..’z’]; // English

assert upletter * loletter == {};
value letters := upletter + loletter;
value delimiters := char - letters;

type text is seq char;
type word is (seq letters) - { [] };

Call the solution program by the name cwp. Via a command
shell, it is invoked as in

cwp k input-fnm output-fnm

The number k is given as an explicit argument, not as part
of the input file being scanned, to the program. The k above
stands for the radix-10 word of the number k. We do not
care to deal with stdin, stdout, nor with input output
redirections. The file-name must be a word. The arguments
input-fnm and output-fnm are file-names.

B. Occurrences of a Word

Uppercase and lowercase letters are considered equal. Two
words are equal if they are string-equal after ignoring the
lower/upper case distinction. For example the two words ugLy
and Ugly are equal. The lettercode function gives the
ordinal position of a letter in the alphabet. 4

function infix "==" (s, t: word) is
(lettercode@(s) == lettercode@(t))

What does it mean to say that a word w occurs n times in
the text t? For example, how many times does “hi” occur in
“hihihoho hi”? It should be 1.

function noccur (w: word, t: text) is
if #t = 0 => 0;
:: w == t => 1;
:: else => noccur(w, x) + noccur(w, y) where

x, y: seq char, d: delimiters such-that
(t == x + [d] + y)

fi

2We do not wish to say something like “A word is a maximal subsequence
of one or more contiguous certain-kind-of-characters of the input file” because
we must be able to talk about a word independently of a text file.

3ÔM: Sets and sequences are built-in data types. If q is a sequence, #q is
the length of q, the indices begin at 1, and q[i] gives the i-th item of q. The
+ between sequences denotes catenation; [] denotes the empty sequence.

4Explain at @, apply-all, symbol.

3

C. Alphabetically Sorted

function infix "<" (s, t: word) is (
for some z: word (t == s + z)
or
for some i: 1 .. min(#s, #t) (

s[1..i-1] == t[1..i-1],
lettercode(s[i]) < lettercode(t[i])

));

function sorted(q: seq T) is (
for i: 1 .. #q-1 (q[i1] <= q[i+1]));

function rsorted(q: seq T) is (
for i: 1 .. #q-1 (q[i1] >= q[i+1]))

D. Word-Nat Pairs

type wordnat is tuple (w: word, n: nat);

Consider wnq, a sequence of k word-number pairs, with
the following properties. We can think of it as a table of two
columns. Its first “column” 5 lists words without duplication.
Its second column (a sequence of numbers) is sorted in the
non-increasing order. Further more, a word w is listed in wnq
only if no word, not also listed in wnq, occurs more frequently
in the input text than does w.

function to-wordnat(itxt: text, k: nat) is
value wnq : seq wordnat such that (

k = #wnq = #set(wnq.w),
sorted(wnq.n),
for w: word (

w in wnq.w
implies
for x: word (
x in wnq.w
or noccur(x, itxt) <= noccur(w, itxt))

))

TBD Check 6

E. k Most Frequent Words

How should we define “k most frequent words”? Suppose
k = 5, and no word occurs more than 8 times, and there are
10 distinct words occuring exactly 8 times each. Would any 5
words from the 10 be acceptable?

The above definition of wnq yields a subtle way out for the
special case when the input text does not contain k distinct
words. It allows, in only this case, wnq to contain words that
do not occur in the input. Obviously, the frequency of such
words must be 0.

The design problem is essentially to construct wnq from
the given input text itxt and number k.

F. Input File of Text

Our input file content is text. For use in our designs, we
map the text to a sequence of words.

G. Output File of Text

The output of the program is a text file. The file-content
of the output file must consist of exactly k lines. Each line

5ÔM: wnq.w yields a sequence made out of the w-components of the wnq
sequence.

6itxt may not have enough words?

consists of exactly two words. The second word is a radix-
10 word of a non-negative number. This number is the count
of how many times the first word occured in the input file
content. The first words of the k lines must all be distinct.

If the input file content has less than k different words, the
cwp is free to chose arbitrary words with zero as their counts.

Each word in the output is printed along with its frequency
count on a separate line. The word is separated from the the
frequency count by a fixed number, say one, blanks. No word
is to be repeated. The number must not have leading zeroes.7

function maptotext(q: seq wordnat) is
if q == [] => [];
:: else =>

q[1].w + " " + itoa(q[1].n) + "\n" + ↪→
maptotext(q[2..])

fi

Considering the command issued as an invocation cwp(k,
fin, fout), we describe the functionality in terms of the
pre- and post-conditions of the cwp.
file-content(fout) :=

maptotext(
to-wordnat(file-content(fin), k)

);

III. CWP DESIGNS

We will be presenting seven levels of design (see Section
III-C), each described at a different level of abstraction.

A. Design D0 with a Generic Container of Words

Our main concern at the highest level of design is function-
ality. The design D0 is given three arguments: k is the number
of common words, fin is the name (as one word) of input file,
fout is the name of the output file to be produced.
module D0(k: nat, fin: word, fout: word) is (

import module lex, cow;

init (
var itxt := file-content(fin);
lex.init(itxt);
var cw := cow.init(lex.nextlexeme(itxt));
cw.build-all-words();
file-content(fout) := cw.find-frequent-words(k);

))

The file named fout will have as its content the string built
from the k most frequent words.

1) Module cow: The cow module provides a container of
words. The procedure build-all-words() inserts into cw
all the words found in the content of file fin.
module cow is (
import lex.nextlexeme(nat) (nat, nat);
init (var cw := {}); // empty set
let old-word(w) == w in cw;
let incr-count(w) == /*: w was in cw :*/;
let add-new-word(w) == /*: w was not in cw :*/;

procedure build-all-words() is (
var m, n: nat;
var i: nat := 1;

7result type of maptotext?

4

while do
(m, n) := nextlexeme(i);
if m > n => break fi;
let w == itxt[m..n];
if old-word(w) => incr-count(w);
:: else => add-new-word(w)
fi;
i := n + 1;

od
))

In the above, the comments beginning with //: are “formal”
comments expected to be replaced with code in ÔM later.

B. Mapping Input Text to Words

Function nextlexeme examines itxt[i..], without
modifying it, and establishes the borders of the next word.
We wish to construct the cw incrementally by adding each
word delivered by nextlexeme.

1) nextlexeme: A Spec: The following is a specification, not
a design, of function nextlexeme.8

function nextlexeme(i: nat) is value
(m: nat, n: nat) such-that (
(itxt[m..n] in word,

i <= m <= n <= #itxt,
n < #itxt implies itxt[n+1] in delimiters,
set(itxt[i..m-1]) <= delimiters

)
or
(m > n iff set(itxt[i..]) <= delimiters)

)

2) nextlexeme: A Design: We now proesent a design of the
above that maps the given sequence of characters in the input
file into a sequence of words as and when needed is described
here. This module is not further refined.9

3) Module lex: Module lex supplies function
nextlexeme that takes one nat argument itxt, and
returns a pair (a, b): (nat, nat). The spelling of the next
lexeme starts at index a and ends at b.

module lex(itxt: text) is (
assert (itxt[#] in delimiters,
itxt[#-1] !in delimiters);

procedure nextlexeme(i: nat) pre (i < #itxt) is
var (m: nat, n: nat) such-that (

m := i;
while do itxt[m] in delimiters => m := m + ↪→

1 od;
n := m;
while do itxt[n] !in delimters => n := n + ↪→

1 od;
n := n-1;

))

C. Design Levels

In what follows, the module cow / data-structure cw will
be refined several times. Our first design D1 uses a bag of
words as cw, which is quickly refined into an ordered set of
pairs. Each pair consists of a word, and its frequency count
in the bag in order make the operations old-word(w),
incr-count(w), add-new-word(w) efficient. The set

8ÔM: In the context of sets, the token <= stands for the subset-of relation.
9Where did we make sure that itxt[last] is a delimiter?

is ordered alphabetically by the spelling of the words it
contains.

The representation is progressively refined from a table
(designs D2 and D3) to an n-ary tree (design D4), to a trie
(designs D5 and D6), and finally to a hash trie (design D7).

In all the designs, we build-... first then we
find-.... This suggests that we may choose one representa-
tion for cw during the build-..., and a different one for the
find-..., transforming the representation once between the
two. During the find-..., in order to efficiently discover the
most frequent word, it would be best if cw were a set of word-
count pairs ordered not aplhabetically but by the frequency
counts. Knuth does this by progressively converting, in situ
(i.e., without using additional memory), the (hash) trie into a
linked list. This is perceived by many readers as tricky and
presents us with one more layer of abstraction, from design
D5 to D6.

IV. BAG OF WORDS

Even though the specification (Section II) is considering all
the words when it says for x: word ..., in the design we
need consider only the words occuring in the input text, itxt.
On the other hand, we must examine each and every word of
itxt, otherwise we may miss the most frequent word, or
have wrong frequency counts.

It is our goal to generate a/the piece of text that sat-
isfies the output requirement of the specification progres-
sively as the value of the variable otx, which stands for
file-content(fout).

A. Design D1 Using a Bag of Words

The following design satisfies the CWP. Functions
nextlexeme is specified in Section III-B1.

module bow is
init (
var itxt := file-content(fin);
var bw: bag of word := {| |};)

let old-word(w) == ();
let incr-count(w) == ();
let add-new-word(w) == (bw += {| w |});

procedure build-all-words() is
as-in module D0;

)

The empty parens in old-word(w) == () and in
incr-count(w) == () need explanation. Maybe old-
word should be false, and incr-count should be a no-op?

Function mostfrequent examines the bag bw, and re-
turns a most frequent word and its frequency. Note that we
deliberately choose not to uniquely specify which word is to
be returned when there are several equally frequent ones in
bw.

function mostfrequent() pre (#bw > 0) is
value wn: wordnat such-that (

wn.n = wn.w #in bw,
for x: bw (x #in bw <= wn.n)

);

procedure find-frequent-words(k: nat) is

5

var otx: text (
var w: word;
var i, n: nat;
otx := [];
for i: {1..k} (
if bw == {| |} => break fi;
(w, n) := mostfrequent();
bw := bw - {| w ** n |};
otx := otx + w + [blank] + itoa(n) + [newline]

))

B. Design D1 is a model of D0

The design D1 refines D0. It is essentially the same as D0.
Written formally as D1 |= D0.

module D1(k: nat, fin: word, fout: word) is (
import module lex, bow;
init (
var itxt := file-content(fin);
lex.init(itxt);
var bw := bow.init(lex.nextlexeme);
bw.build-all-words();
file-content(fout) := bw.find-frequent-words(k);

))

V. DICTIONARIES

Conceptually, a dictionary is a collection of objects orga-
nized in a particular way to ease subsequent search of these
objects. Each object in such a collection is attached various
attributes of interest. For our purposes here, the only attributes
of interest are its spelling and its frequency of a word.

A. Tables v. Dictionaries

A few subtleties aside, the tables of ÔM can model the
dictionaries nicely. A table is a set of like tuples whose first
elements are all distinct. A tuple is similar to a sequence but
may contain dissimilar items.

module dict is (

init (var dwn: table wordnat := {};)

let old-word(w) == w in dwn.w;
let incr-count(w) == dwn[w].n += 1;
let add-new-word(w) == dwn += { (w, 1) } ;

procedure build-all-words() is as-in module D1;

procedure find-frequent-words(k: nat)
pre (#dwn >= k) is var otx: text (
value count-wnq: seq wordnat such that (

bag(count-wnq) = bag(dwn),
rsorted(count-wnq.n)

);
assert (#count-wnq >= k);
otx := [];
for i: {1..k} (

let (w, n) == count-wnq[i];
otx += w + [blank] + itoa(n) + [newline]

)))

The count-wnq is specified by describing its properties.
We never “do a design” for it because in the later refinement
of the overall design D2, the count-wnq disappears.

B. Design D2 Using Tables

D2 looks identical to D1 (Section IV-A) except we now use
dwn instead of bow.
module D2(k: nat, fin: word, fout: word) is (
import module lex, dict;
init (
var itxt := file-content(fin);
lex.init(itxt);
var dwn := dict.init(lex.nextlexeme);
dwn.build-all-words();
file-content(fout) := ↪→
dwn.find-frequent-words(k);

)
)

C. Mapping a Bag of Words to a Dictionary

function dictionary(bw: bag of word) is
value d: table wordnat such-that (
for w: set(bw) (d[w].n == w #in bw),
for w: d.w (d[w].n == w #in bw)

)

The above defines a relationship between d and bw. Clearly,
we want all the words in the bag bw appear in the first column
of the table d with the correct count: for w: set(bw)
(d[w].n == w #in bw). The second line is requiring
that whatever words are in the first column of the table, their
occurences count in the bag be correct. The second line could
have been written equivalently as
for w: d.1 - set(bw) (d[w].2 == 0).
In other words, we are allowing for the possibility of non-bw

words to appear in the table. This happens to be a significant
and insightful jump in the design process.

As can be readily seen, dictionary({| |}) = {}.
Suppose dwn = dictionary(bw). Then after
add-new-word(w) and after the if-statement in
build-... we will have the same relationship holding with
the updated values for dwn and bw.

VI. WORD-NAT PAIRS SORTED ON SPELLING

Let us consider a design where we have the dictionary
continually sorted for ease of searching for a word. During
the building up of this “dictionary” it will be maintained
as a sequence of tuples, var alpha-wnq: seq wornat,
sorted based on the alphabetic order of words.
function alphasorted(q: seq wornat) :=
(for i: 2..#q (q[i - 1].w <= q[i].w));

A. Design D3 Using Word-Nat Pairs

Design D3 refines D2 by using module
alpha-sorted-dict instead of dict. D3 does not
refine the procedure find-frequent-words of D2
further.
module alpha-sorted-dict is (

init (var alpha-wnq : seq wornat := [];)

let old-word(w) == (w #in alpha-wnq.w > 0);
let incr-count(w) ==
(alpha-wnq[i].n := 1 + alpha-wnq[i].n);

let add-new-word(w: word) ==
alpha-wnq := value uqwn: wornat such-that (
set(uqwn) = set(alpha-wnq) + { <w, 1> },

6

alphasorted(uqwn)
);

procedure build-all-words() is as-in module D2;
post set(alpha-wnq) = dwn;

procedure find-frequent-words(k: nat) is
as-in module D2;

)

Note the post-condition set(alpha-wnq) == dwn. The
dictionary dwn was allowed to contain certain words with
zero counts; hence, alpha-wnq also will. But neither dwn
nor alpha-wnq have indicated specifically what the charac-
terization of these zero-count words are.

VII. N-ARY TREES

An n-ary tree is a rooted tree, where each node has at most
n ordered subtrees; see Figure 1. In CWP, we store in each
node a letter, and a count. The path from the root to a node
yields a word made up of these letters. The cnt field of a
node contains the number of times the word represented by
the path to this node occurs in the input text itxt. The cnt
fields of some nodes may be zero since not every prefix of a
word occurs as a word in itxt.

%
%
%%

�
�
�

L
L
L

#
#
#

�
��

T
T
T

Q
Q
QQ

e
e
e
e

aaaaaaaaa

!!!!!!!

Q
Q
Q
Q

aaaaaaa

XXXXXXXXXXXXa:16

n:5

c:1 t:0

r:0

e:1

t:1

b c ...

root

e:3 m:1d:2 t:1
Fig. 1. Example n-ary tree

We also would like to alphabetically order the subtrees of
every node based on the letters in their roots.

type ntree-ao is
tuple (

ltr: letter,
cnt: nat,
stq: seq ntree-ao

) such that (for all t: ntree-ao
(sorted(t.stq.ltr)))

The tree of Figure 1 is the result several operations:
add-new-word with a, an, and, ant, arc, are,
arm, at, ate, and incr-count with a 15 times, with
an 4 times, with and once, and so on. Note the node
with t:0 shown as a leaf in this figure. Using the op-
erations of add-new-word and incr-count it is not
possible to have a leaf node with 0 count; it is an inter-
nal node and the subtree below that node (e.g., due to an
add-new-word("article") is not shown. However, the
tree of Figure 1 is, as-is, a valid n-ary tree.

As an example insertion of a new word, let us consider
arduous. After old-word("arduous") says false,
we make a subtree by invoking mk-ntree-ao("duous"),

which must become a subtree of node (r:0) between the
subtrees at c:1 and e:3.

A. Search for a Word

We search for a given word w as follows in a copy of the
tree this. The search routine does not alter the tree in any
way.
procedure search(w: word) is (
var t: ntree-ao := this, p: nat := 0;
while do
var i: nat := w[p+1] ## t.stq.letter;
if i == 0 => break fi;
p += 1;
if p == #w + 1 => break fi;
t := t.stq[i]

od
)

The procedure returns a triplet value (t, p, i). Its first
component t is an n-ary tree rooted at the last node searched.
The second component p is a natural number. It is set so
that the path from the root yields w[1..p-1], and either
p = #w + 1, or the letter w[p] is not among the children
of t. Thus,
p = #w + 1 if the word is already present, and i is set

so that the root of the i-th subtree contains the letter w[#],
p ≤ #w and i = 0 otherwise.

B. Design D4 Using N-ary Trees

D4 refines old-word(w) == (w #in alpha-
wnq. w > 0) of the preceding section into
search(w).2 = #w + 1. The initialization var nt:
ntree-ao := (’ ’, 0, []) produces an n-ary tree
that has just one node (the root) containing the blank10, the
count zero, and the empty sequence as its stq.
module D4(k: nat, fin: word, fout: word) is (
import type ntree-ao, module lex(itxt);
init (

var itxt: text := file-content(fin);
var nt: ntree-ao := (’ ’, 0, []);

);
let (tw, pw, iw) == nt.search(w);
let sq == tw.stq;
let old-word(w) == (pw == #w + 1);
let incr-count(w) == (sq[iw].cnt += 1);
let add-new-word(w) == (
let m == min ({#sq + 1} + // set union
{j such-that (0 < j < #sq + 1,

w[pw] < sq[j].ltr) });
sq[@ m := mk-ntree-ao(w[pw..])]);

procedure build-all-words() is as-in module D3;
procedure find-frequent-words() is
as-in module D3;

)

The @ stands for the apply-all, and q[@ i := e] stands
for an updated sequence q, where all its items at indices i
and above are shifted to one-higher index positions, and the
i-th item becomes e.
procedure mk-ntree-ao(w: word) pre (#w > 0) is
var t: ntree-ao (
t := (w[#], 1, []);

10letter?

7

� �
PPPPPPPPPPPPq

XXXXXXXXXXXXXz

� �

� � � � ?

Q
Q
Q
QQs

B
B
BBN

a:16 b c ...

root

z

n:5

t:0

r:0

e:1e:3 m:1d:2 t:1 c:1

t:1

Fig. 2. Example Plain Trie

for var i: nat := #w - 1 downto 1 (
t := (w[i], 0, [t])

))

C. N-ary Tree to Bag of Words

For any value of type ntree-ao we can find a correspond-
ing value of alpha-wnq. The converse, however, is false.
This happens due to zero-count words. As a trivial example,
the following possible value of alpha-wnq is unrepre-
sentable as an ntree-ao: [("are", 1)] in contrast to
[("a", 0), ("ar", 0), ("are", 1)]. Recall that
neither dwn of Section V-C nor alpha-wnq of Section VI-A
have indicated specifically what the characterization of the
zero-count words that they may contain is. For every word w
with a count greater than 0 occuring in a ntree-ao, all the
prefixes of w will also occur. The counts of these prefixes may
or may not be zero depending on whether they have occured
as independent words.

VIII. TRIES

A trie is a binary tree that has a certain relationship to our
n-ary tree. This relationship is analogous to that discussed in
Section 2.3.2 of [Knuth 97]. Figure 2 is a trie made from that
of Figure 1. In terms of the figures, we see that the left most
edges of each node are retained, but the other edges from a
node to its subtrees are replaced by “horizontal” edges from
one node to its sibling.

A. The trie

For our discussion here, cellid is any arbitrary type that
has a “sufficient” number of values. We define four tables
whose keys (i.e., the first components of its elements) are
values from this type. A trie is a subset of cellids, and
the four tables that collectively satisfy certain constraints.
These constraints amount to requiring that the structure we
are defining better be a binary tree.

type cellid;
value emt: iletter := 1 + max(#upletter, #loletter);
value hdr: iletter := 0;

value nilid : cellid := new-cellid();
value rootid: cellid := new-cellid();

type trie := table (
cid: cellid,
ltr: iletter,
cnt: nat,
nxt: cellid,
hic: cellid
) such-that for t: trie (

is-finite(t.cid),
the-children-are-ordered(t),
unique-parent(t),
req-nilid-rootid(t)

);

let cids == t.cid; // a few abbreviations
let cnt(x) == t[x].cnt;
let nxt(x) == t[x].nxt;
let hic(x) == t[x].hic;

Knuth [Bentley 86] used our hdr value as his emt and vice-
versa.

1) Nil ID and Root ID: We reserve two values, that we
name as nilid and rootid, from the cellid. Every value t
of type trie will be such that nilid and rootid are in
t.cid.

function req-nilid-rootid(t: trie) is (
t[nilid].ltr = emt; t[rootid].ltr = emt;
t[nilid].nxt = nilid; t[rootid].nxt = nilid;
t[nilid].hic = nilid; t[rootid].hic = nilid
t[nilid].cnt = 0; t[rootid].cnt = 0;

)

.

2) The Children are Ordered: The children of a node
u are ordered based on the letters they contain. The list
of children starts with hic(u), and the rest is given by
nxti(hic(u)). The last child has no next. If a cellid u
has no children, hic(u) = nilid. Otherwise, the value
v = hic(u) is the cellid of the child v of u contain-
ing the highest letter among the children of u. If y =
nxt(x) is not nilid, we require that x be a sibling of
y, that is parent(x) = parent(y), and ltr(y) <
ltr(x). Obviously, nxti(d) = nilid, for some 0 ≤ i ≤
#letter.

function childrenq(u: cids) is
value q: seq cids such-that
if hic(u) = nilid => q = [];
:: else => (

q[#] = hic(u);
nxt(q[1]) = nilid;
for i: 1..#q - 1 (q[i] = nxt(q[i+1])))

fi

function parent(u: cids) is
if u == rootid => nilid;
:: u == nilid => nilid;
:: else => value p: cids such-that (u in ↪→

childrenq(p))
fi

function the-children-are-ordered() is
for u: cids (
let q == childrenq(u);
for i: 1..#q - 1 (

ltr(q[i]) < ltr(q[i+1])
))

3) Parent is Unique: Note that because cids is finite, there
exists a finite i such that parenti(u) = rootid for all u
except nilid.

function unique-parent() is (
for u, v: cellid (

8

d:2 t:1 c:0 e:3 m:1 t:0 e:1

n:5 r:0 t:1

a:16 b c ... z

root

Fig. 3. Example Trie with Rings

set(childrenq(u)) * set(childrenq(v))
!= {} iff u == v

))

4) Search for the Word in a Trie: The procedure
ltr-among-children is a refinement of w[p+1] ##
t.subs.ltr of Section VII-A. The procedure is guaranteed
to terminate because ltr(nilid) = hdr < a, for any a.
Note that x is “behind” y in this routine.
procedure ltr-among-children(a: letter,

p: cellid) is (
var x, y: cellid;
(x, y) := (p, hic(p));
while do ltr(y) > a => (x, y) := (y, nxt(y)) od

);

procedure search(w: word) returns
var (vi: cellid, p: nat, ui: cellid) is (
vi := t.rootid;
p := 0;
while do

let a == w[p+1];
(var wi: cellid, ui) := ltr-among-children(a, ↪→
vi);
if ltr(ui) == a => break fi;
p += 1;
assert (ltr(ui) == w[p], ui == nxt(wi));
if p == #w => break fi;
vi := ui;

od
)

B. Tries with Rings

We now enhance such tries into those that have circular lists
of siblings. See Figure 3. Suppose u is a parent whose highest
child is v and lowest child is w. In the unringed tries, hic(u)
= v, and nxt(w) = nilid. In ringed-tries, we in-
troduce an extra cellid h, called a header, for each parent
with children, so that hic(u) = h, nxt(h) = v, and the
nxt(v) etc. remain as they were, except nxt(w) which was
nilid now becomes h. The parent of h is u. The node h of
course has no children, and there is no meaning yet for either
hic(h), or ltr(h). We define hic(h) as u, and ltr(h)
= dot. Thus, for all cellids x, other than the rootid, either
hic(hic(x)) = x or hic(x) = nilid.
type ringed-trie is trie except (
function childrenq(u: cids) is

value q: seq cids such-that
if hic(u) = nilid => q = [];
:: else => (

q[1] = hic(u);

ltr(q[1]) = hdr;
hic(q[1]) = u;
nxt(q[1]) = q[#];
for i: 1..#-1 (q[i] == nxt(q[i+1])))

fi
)

1) Insert New Word: As before, add-new-word(w)
== mk-ring-trie(ui, pn+1). This adds tuples to the
global trie var t.
procedure mk-ring-trie(ui: cellid, k: nat) is (
var pi := new-cellid();
t += {(pi, w[k], 0, nxt(ui), nilid)};
nxt(ui) := pi;
for j: nat := k+1 .. #w do
var hi := new-cellid();
var ni := new-cellid();
t += {(hi, hdr, 0, ni, nilid)};
t += {(ni, w[j], 0, hi, nilid)};
hic(pi) := hi;
pi := ni;

od;
cnt(pi) := 1;

);

2) Word from Trie: It can be seen readily that a cellid
corresponds to a node of the n-ary tree. The word it represents
is quite simple to compute. To get the parent of any node u,
start from u, go to its header h by traversing the nxt “fields”,
and the hic(h) yields the parent.
procedure header(u: cids) is var u (
pre (u != rootid, u != nilid);
while do ltr(u) != hdr => u := nxt(u) od;

);

let parent(x) == hic(header(x));

function word-from-trie(p: cids) :=
if p == rootid => [];
:: p == nilid => [];
:: else =>

word-from-trie(parent(p))
+ [ltr(p)]

fi

C. Design D5 Using Ringed Tries

module D5(k: nat, fin: word, fout: word) is (

import type ringed-trie;

init (
var itxt: text := file-content(fin);
var t: ringed-trie := {};

);

import module lex: init (itxt);

let (vi, pn, ui) == t.search(w);
let old-word(w) == pn = #w;
let incr-count(w) == cnt(nxt(ui)) += 1;
let add-new-word(w) == t.mk-ring-trie(ui, pn+1);

procedure build-all-words() := as-in module D4;
procedure find-frequent-words() is /*: below ↪→

:*/ ;
)

D. Frequency Sorting of the Words
1) Find Frequent Words: We now refine the procedure

find-frequent-words of D2 further. We introduce (tem-
porarily) an extra field foq to our trie that will contain a

9

“linked-list”, frequency-ordered, of all the words with non-
zero counts.
type trie is table (
...
foq: cellid; // new/ temporarily

)
such-that ...
);

let foq(x) == t[x].foq;

procedure insert-into-foq(p: cids) is (
var q: cellid := rootid;
while do cnt(p) < cnt(foq(q)) => q := foq(q) od;
foq(p) := foq(q);
foq(q) := p;

);

procedure rsort-the-trie() is (
var q: cellid := rootid;
foq(q) := nilid;
for p: (cids - {nilid, rootid})
if cnt(p) > 0 => insert-into-foq(p) fi

);

procedure find-frequent-words() is (
pre (#dwn >= k) ;
var q: cellid := foq(rsort-the-trie());
otx := [];
for var i: nat in {1..k} (
let w == word-from-trie(q);
let n == cnt(q);
otx += w + [blank] + itoa(n) + [newline]
q := foq[q];

)
)

2) Preparing to Dispense with FOQ: The function
word-from-trie() depends on nxt fields only because
header() uses nxt fields. If the header can be computed in
some other manner, the contents of all nxt fields is irrelevant
to the for-loop of find-frequent-words(). This issue
will be dealt with in Section IX-B.

The procedure rsort-the-trie of Section VIII-D1 uses
the loop for p: (cids - nilid, rootid). Note that
the order in which different values for p are chosen is
unspecified. So, we exercise our design freedom and start with
the alphabetically last word and end after the first.
function last-word-from(q: cellid) returns var

p := q is (
while do hic(p) != nilid => p := nxt(hic(p)) od

);

let last-word() == last-word-from(rootid);
let end-of-words() == rootid;

procedure next-word(p: cellid) returns p is (
p := nxt(p);
p :=

if ltr(p) = hdr => hic(p);
:: else => last-word-from(p);
fi

);

function rsort-the-trie() returns var q: cellid ↪→
is (

q := rootid;
foq(q) := nilid;
p := last-word-from(rootid);
while do

if cnt(p) > 0 => insert-into-foq(p) fi;
p := next-word(p);

if p == end-of-words() => break fi;
od

);

As of now, next-word(p) does not use the fop fields,
and insert-.... does not use nxt fields. Hence, while
preserving semantics, we can rewrite the above:

function rsort-the-trie() returns var q: cellid (
q := rootid;
foq(q) := nilid;
p := last-word-from(rootid);
while do
q := next-word(p);
if cnt(p) > 0 => insert-into-foq(p) fi;
if q == end-of-words() => break fi;
p := q;

od
);

This moved next-word(p) to a position above the
insert-into-foq(p). It can be seen readily that af-
ter the nxt field of a node p are used (eother via
last-word-from or via next-word, it will never be
needed again except in word-from-trie(). Thus, we can
set such nxt fields to whatever. We let the foq values time-
share the “residences” of nxt fields: that is:
We declare foq as an alias for nxt field.

E. Design D6 Using Ringed Tries but Without FOQ

[To be inserted]11

IX. HASH TRIES

In defining regular tries, cellid was simply a set of cellids
whose details were left unspecified. The search and insertion
speed is, on the other hand, influenced by what values these
cellids are. We now superimpose these considerations on the
tries.

A. Cell-Ids Refined

The cellids now become natural numbers with a certain
numerical relationship among the parent and children. Suppose
the cellids u and v are siblings. Let acn be a function, yet
to be discussed, that maps cellids of the preceding section to
cell numbers. We will select the mapping acn in such a way
that the integer
acn(v) - acn(u) = ltr(v) - ltr(u).

type hash-trie is ringed-trie such that (
value trie-size := ...;
value alpha := ((sqrt(5) - 1)/2) * trie_size;
rootid = 0;
nilid = trie-size + 1;
cellid = rootid .. nilid;
for t: hash-trie (
for u: t.cids (
let q == childrenq(u),
for i: 1..#q-1 (
q[i+1] - q[i] = ltr(q[i+1]) - ltr(q[i]))

)));Note that we can now satisfy hic(hic(rootid)) ==
rootid by making hic(rootid) also be a 0. Note also
that the rings of different parents can be interleaved.

11[To be inserted]

10

p

0
1
2
3

1000
1001
1002
1003
1004
1005

2014
2015
2016
2017
2018
2019
2020
2021

2000

3000

3021

link[p]

0
2014
1000

2

2000

1005

1
3000

4000

2015

0

ch[p]

hdr

hdr

hdr

hdr

hdr

1
2
3

5

15

6
20

21

sibling[p]

26
0
1
2

1005

1000

2021

2020
2000

3000

2014
2015

3021

count[p] Word

a
b
c

be

ben

af
bet

bent

?

6

6

?

6

?

?

6

?

6

?

6

6
6

6

6

?

6

6

?

Fig. 4. Example hash trie [Bentley 86](p 479)

B. Reading a Word from the Hash Trie

The header of a node u is readily computed, without any
traversal.

function hash-trie.header(u: cids) is v: cids (
pre (u != rootid, u != nilid);
v := u - ltr(u)

);Reading the word-from-trie is the same as in the pre-
ceding section but it now uses the above header().

C. Initial Hash Trie

The following builds an initial hash trie. The emt and hdr
values were defined in Section 7.1.

hash-trie.init is (
var t: hash-trie;

ltr(0) := hdr;
cnt(0) := 0;
hic(0) := #letter;

for i: {1 .. #letter} (
ltr(i) := i;
cnt(i) := 0;
hic(i) := nilid;
nxt(i) := i - 1;

);

for i: {#letter + 1 .. trie-size} (
ltr(i) := emt; // empty-slot

)
)D. Search of a Word

The procedure search of hash-tries is exactly the
same as for tries (see Section VIII-A4). The definitions of
old-word(w) and incr-count(w) remain as before.

E. Insertion of a Word

As we enter the words into the hash trie, the family
rings grow larger and larger. As a result, at some point the
interleaving of rings does not permit an insertion. To resolve
such a collision, we need to relocate one of the rings.
procedure hash-trie.relocate-children
(oh: cellid, nh: cellid) is (
var r: cellid := oh;
var d: integer:= nh - r;
while do ltr(r) != emt => (
nxt(r + d) := nxt(r) + d;
ltr(r + d) := ltr(r);
cnt(r + d) := cnt(r);
hic(r + d) := hic(r);
if hic(r) != nilid => hic(hic(r)) := r + d fi;
ltr(r) := emt;
r := nxt(r);)

od
)

As before, add-new-word(w) == hash-trie.
make(...). This adds tuples to the global hash trie
var t. The hash-trie.mk is more complex than
ring-trie.mk because we cannot merely choose any new
but arbitrary cellid for the letters to be inserted.
procedure hash-trie.mk(ri, ui: cellid, k: nat) is (
var pi, hi, ni: cellid;

oh := hic(ri);
hi := compute-loc(oh, w[k]);
if hi != oh) => relocate-children(oh, hi) fi;
pi := hi + w[k];

ui := hi + ui - oh;
insert-ltr(w[k], pi, ui);

for j: nat := k+1 .. #w (
hi := compute-loc(oh, w[j]);
ni := hi + w[j];
insert-ltr(hdr, hi, hi);
insert-ltr(w[j], ni, hi);
hic(pi) := hi;
pi := ni;

);
cnt(pi) := 1;

);

Function compute-loc returns a possibly new location
for the header implying that the siblings group needs to be
relocated; nh equals oh if there is no such need.
procedure hash-trie.next-hdr-loc(oh: cellid) is
var nh: cellid
if oh = last-h => nh := 0;
:: oh = trie-size - NC => nh := NC + 1;
:: else => nh := oh + 1
fi

procedure hash-trie.compute-loc(oh: cellid, a: ↪→
ltr) is var nh: cellid (

11

nh := oh;
if ltr(h + a) /= emt =>

while do
nh := next-hdr(hn);
if will-they-fit(a, oh, nh) => break fi;

od
fi

)

In the function below, a node containing the a: iletter
will become the child of a certain node p, whose header is
presently at oh and we wish to move it to nh. The a is
chronologically the latest child to join the siblings. Function
will-they-fit is true iff the cells d units away from
each of the children of p are vacant. The distance d can be a
negative integer.

function hash-trie.will-they-fit
(a: iletter, oh, nh: cids) is b: boolean (
let q == siblings(oh);
let d == nh - oh;
pre ({oh, nh} * {rootid, nilid} = {});
post (b = (ltr(nh + a) = emt,

for u: q (ltr(u + d) = emt)));
);

One letter code is inserted by insert-ltr().

procedure hash-trie.insert-ltr
(a: iletter, an: cellid, pn: cellid) is (
ltr(an) := a;
cnt(an) := 0;
hic(an) := nilid;
nxt(an) := nxt(pn);
nxt(pn) := an;

)

F. Sorting the Words by Frequency

Recall that the sorting by frequency of all the words is begun
only after all the input has been read, and the hash trie is fully
constructed.

procedure hash-trie.link-p-into-sorted(p: cellid) ↪→
is (

let m == sorted(large-count);
if f < large-count => insert-into-list(p, f);
:: cnt(p) >= cnt(m) => insert-into-list(p, ↪→

large-count);
:: else => insert-into-sib(p, m)
fi;

);

procedure hash-trie.move-to-last-suffix(var p: ↪→
cellid) is (

while do chi[p] != nilid => p := nxt[chi[p]] od;
)

procedure hash-trie.rsort() is (// trie-sort()
var p, q: cellid;
for p in 1 .. large-count (sorted[p] := nilid);
p := nxt[rootid];
move-to-last-suffix(p);
while do p != nilid => (

q := nxt[p];
if count[p] != 0 => link-p-into-sorted(p) fi;
if ltr[q] != hdr => move-to-last-suffix(p);
:: else => p := hic[q]
fi

) od
)

The procedure find-frequent-words is the same as
before except fop is replaced by nxt. “After trie-sort
has done its thing, the linked lists sorted[largecount],
..., sorted[1] collectively contain all the words of the
input file, in decreasing order of frequency. Words of equal
frequency appear in alphabetic order.” [Bentley 86]

G. Design D7 Using a Hash Trie

module D7(k: nat, fin: word, fout: word) is (
import module lex, hash-trie;
init (
value itxt := file-content(fin);
lex.init(itxt);
var t := hash-trie.init(lex.nextlexeme);
t.build-all-words();
file-content(fout) := t.find-frequent-words(k);

));

module hash-trie is (
let (vi, pn, ui) == t.search(w);
let old-word(w) == pn = #w;
let incr-count(w) == cnt(nxt(ui)) += 1;
let add-new-word(w) == t.mk-hash-trie(...);
procedure build-all-words() is as-in module D6;

);

X. RELATED WORK

Knuth originated the idea of ‘literate programming’, and
has contributed several examples, both large (TEX[Knuth 86a],
Metafont [Knuth 86b]) and small ([Knuth 84] and
[Bentley 86]).

The tradition pioneered by [Kernighan and Plauger 76] is
continued in such books as [Comer 84], [Tanenbaum 87],
[Wirth and Gutknecht 92] and [Fraser and Hanson 95], which
include complete listings of source code, along with cogent
explanations of why they work. These are impressive accom-
plishments. But all the ebove examples neglect to emphasize
design descriptions, and concentrate on implementation de-
tails.

There is a fundamental difference between Knuth’s ex-
amples, and the books by others mentioned above. Knuth’s
examples are meant for peers to read, understand and evaluate,
whereas the above books are for students to emulate and learn
the programming techniques. The designs of Knuth’s examples
get buried in a myriad of implementation surface details. The
descriptions in the other books are too imprecise.

There are now a large number of large open source
projects, with thousands of pages of documentation, but
with hardly any design descriptions. [Lenberg et al. 2015]
[Salman et al. 2015] [FM 2018]

A. Open Source Projects

Open source projects rarely have Requirements, Specs,
Design and Implementation documents. There is typically a
so-called ReadMe file describing the software briefly, and
explaining how it can be built and installed.

B. Rigorous Description of Software Designs

The problem and Knuth’s solution use structures that are
known as dictionaries, and hash tries, and notions such as lex-
ical structure. These have been the main source of ambiguity.

12

We give precise definitions for all these. Natural languages,
and so-called pseudo-code are unsuitable.

It is important to note that our definitions of these structures
are not only precise, and rigorous but also formal. Most
definitions in combinatorics and algorithms books, including
those of Knuth, are informal.

We write these definitions in a software design language,
named ÔM, which is as “formal” as a typical programming
language is these days (2018). We minimally describe the
notation and semantics of ÔM as needed. Full details of ÔM
are given in [Mateti 2018].

XI. EVALUATION

This section is intended to give an objective evaluation of
the experience we have had in doing the exercise reported
in this paper. We are concerned with three factors in this
evaluation: the complexity of the example, a retrospect of
ÔM12, and our stylistic use of ÔM.

A. Critique of Knuth’s Solution

As we have mentioned earlier, the complexity of this paper
as an example of a design document is due to the intricate
structure of the hash trie. The hash trie has some nice prop-
erties such as storage efficiency and alphabetical orderedness
of its content. Unfortunately, these properties do not come for
free. McIlroy comments that “Knuth has shown us here how to
program intelligently, but not wisely. ... He has fashioned a
sort of industrial strength Fabergé egg — intricate, wonderfully
worked, refined beyond all ordinary desires, a museum piece
from the start.”

We ought to describe this complex structure and the opera-
tions to access it in such a way as to exhibit the reasons why
it has these properties and how they are preserved. In addition
to that, we are very much concerned with precision throughout
the descriptions.

However, the complexity inherent to Knuth’s solution mo-
tivated us in choosing it as the appropriate material to test the
suitability of ÔM to the design of real software systems.

B. Why is it this long?

An alternate design solution by David Hanson
[Van Wyck 87] is less than 5 pages. Knuth’s paper
[Bentley 86] is much shorter than the present paper.
Why? It is longer mostly because of the explanation of the
design language details.

C. ÔM, Our Design Language

The following criteria are important in evaluating a software
design specification lanuguage: availability of versatile high
level data structures, expressibility of algorithmic descriptions
and design decisions, degree of precision realizable in design
sepecifications, executability of designs, and support to design
methodologies and principles. These data structures together
should allow a “good” designer to compose an abstract rep-
resentation of any data object necessary to express designs.

12drop this

In addition, a design language must offer an adequate and
efficient syntax if it is going to be used by human designers.
The syntax of the language must allow the designer to express
designs in a natural manner, without having to cope with
overwhelming syntactic details. Short hand builtin notations
help avoid unnecessarily lengthy description. With respect to
these criteria ÔM appears to be fairly satisfactory.

Due to its nature, ÔM can be used in various styles [?]:
functional style, imperative style, sometimes logic style, and
very often a mixture of the above. However, the functional
and logic styles are more appropriate for high level design
specifications whereas the imperative style is used for low
level design specifications.

The ÔM usage in the current papaper is a limited subset
of the full language Constructs to support expression of
design decisions such as those concerning resource usage and
choices among alternative designs are still under investigation.
In addition, as related to natural design expressibilty, the
language will have some mechanism for importing notations
from the problem domains of the designs. For instance, if we
were to design a satellite control program, we would like to be
able to express its design in terms of the vector notation that
the typical physicist would use in this case. Finally, because
ÔM is primarily directed towards an engineering contribution
to software design, it does not yet provide any particular
documentation support beyond the usual commentaries.

XII. CONCLUSION

Our example is the result of a reverse engineering process.
The specifications and designs were written after studying the
implementation. The material presented in this paper turned
out to be longer (in terms of text size) than Knuth’s imple-
mentation for instance. However, one must note that formal
specifications and designs, as presented above, convey more
information than does their corresponding implementations.
Through the example presented above, we have demonstrated
some features of ÔM and have shown that indeed the language
is powerful enough to support the design complex software
systems. With its constructs, we have been able to precisely
“specify a design solution” to the CWP common words prob-
lem.

REFERENCES

[Bentley 86] J. Bentley, D. E. Knuth and M. D. McIlroy,
“Programming Pearls,” a column in Communications of
the ACM, Vol. 29, No. 6, 471-483. i, 1, 2, 7, 10, 11, 12

[Cohen et al. 86] Bernard Cohen, W.T. Harwood, and M.I.
Jackson, The specification of complex systems,
Addison-Wesley, 1986, ISBN: 0-201-14400-X.

[Comer 84] Douglas Comer, Operating System Design,
Prentice-Hall, c1984-c1987, ISBN: 0-13-637539-1 (v.
1), ISBN: 0-13-637414-X (v. 2). 1, 11

[Diby et al. 18] Kouakau Diby, and Others, Examples in ÔM
of Software Specs and Designs, 1988 - 2018.

[Diby 90] Kouakau Diby, Foundations of Hierarchical Design
Methods for Software, Ph. D. Dissertation, Wright State
U, June 90.

13

[FM 2018] Klaus HavelundJan, PeleskaBill, and RoscoeErik
de Vink (Eds), 22nd International Symposium on For-
mal Methods, FM 2018, Oxford, UK, July 15-17, 2018,
1, 11

[Fraser and Hanson 95] Christopher W. Fraser and David R.
Hanson, A retargetable C compiler : design and im-
plementation, Benjamin/Cummings Pub. Co. ISBN: 0-
8053-1670-1. 1, 11

[Hayes 93] Ian Hayes (Editor), Specification case studies,
Prentice Hall, 1993, 2nd ed. ISBN: 0-13-832544-8.

[Kernighan and Plauger 76] Brian Kernighan, and Plauger,
Software Tools, Prentice-Hall. 1, 11

[Knuth 97] Donald Knuth, The Art of Computer Program-
ming Vol. 1: Fundamental Algorithms, Addison-Wesley,
1997, 3rd ed, ISBN: 0-201-89683-4 (v. 1). 7

[Knuth 73] Donald Knuth, The Art of Computer Program-
ming, Vol. 3: Sorting and Searching, Addison-Wesley,
Reading, Mass., Section 6.3.

[Knuth 84] Donald E. Knuth, “Literate Programming,” Com-
puter Journal, Vol. 27, No. 2, 97–111. Reprinted in
Literate Programming (book), Center for the Study of
Language and Information, c1992, ISBN: 0-937073-80-
6. 1, 11

[Knuth 86a] Donald E. Knuth, TeX: The Program, Addison-
Wesley, Reading, Mass. 1, 11

[Knuth 86b] Donald E. Knuth, MetaFont: The Program,
Addison-Wesley, Reading, Mass. ISBN: 0-201-13438-
1. 1, 11

[Knuth and Levy 94] Donald E. Knuth, and Silvio Levy, The
CWEB System of Structured Documentation: version
3.0, Addison-Wesley, c1994, ISBN: 0-201-57569-8.

[Lenberg et al. 2015] Per Lenberg, Robert Feldt, Lars
Göran Wallgren, Behavioral Software Engineering:
A Definition and Systematic Literature Review,
Journal of Systems and Software, Volume
107, 2015, Pages 15-37, ISSN 0164-1212,
https://doi.org/10.1016/j.jss.2015.04.084. 1, 11

[Mateti 2018] Prabhaker Mateti, “ÔM: A Design Specifi-
cation Language”, Unpublished Manuscript, 45+ pp.,
2018, Department of Computer Science and Engineer-
ing, Wright State University, Dayton, OH 45435. 2,
12

[Meyer 85] Bertrand Meyer, “On Formalism in Specifica-
tions,” IEEE Software, Jan 1985, 6–26. 2

[Salman et al. 2015] Iflaah Salman ; Ayse Tosun Misirli ;
Natalia Juristo, Are Students Representatives of Pro-
fessionals in Software Engineering Experiments? 2015
IEEE/ACM 37th IEEE International Conference on
Software Engineering 1, 11

[Tanenbaum 87] Andrew Tanenbaum, Operating Systems:
Design and Implementation, Prentice-Hall, ISBN: 0-13-
637406-9. 1, 11

[VDM] Vienna Development Method, http://www.ifad.dk/
vdm/vdm.html 1

[Van Wyck 87] Christopher J. Van Wyck, “Literate Program-
ming,” a column in Communications of the ACM, Vol.
30, No. 7, pp. 594-599. 1, 2, 12

[Wirth and Gutknecht 92] Jürg Gutknecht, and Niklaus
Wirth, Project Oberon. The Design of an Operating
System and Compiler, ACM Press, 1992, Addison-
Wesley Publishing. 1, 11

[Draft PDF generated October 5, 2018.]

http://www.ifad.dk/vdm/vdm.html
http://www.ifad.dk/vdm/vdm.html

	Introduction
	Goals of this Paper
	On Design
	Vertical Refinement
	Horizontal Decomposition
	Rigorous Description of Software Designs

	Structure of the Paper

	The Common Words Problem: Spec
	What is Text and What are Words?
	Occurrences of a Word
	Alphabetically Sorted
	Word-Nat Pairs
	k Most Frequent Words
	Input File of Text
	Output File of Text

	CWP Designs
	Design D0 with a Generic Container of Words
	Module cow

	Mapping Input Text to Words
	nextlexeme: A Spec
	nextlexeme: A Design
	Module lex

	Design Levels

	Bag of Words
	Design D1 Using a Bag of Words
	Design D1 is a model of D0

	Dictionaries
	Tables v. Dictionaries
	Design D2 Using Tables
	Mapping a Bag of Words to a Dictionary

	Word-Nat Pairs Sorted on Spelling
	Design D3 Using Word-Nat Pairs

	N-ary Trees
	Search for a Word
	Design D4 Using N-ary Trees
	N-ary Tree to Bag of Words

	Tries
	The trie
	Nil ID and Root ID
	The Children are Ordered
	Parent is Unique
	Search for the Word in a Trie

	Tries with Rings
	Insert New Word
	Word from Trie

	Design D5 Using Ringed Tries
	Frequency Sorting of the Words
	Find Frequent Words
	Preparing to Dispense with FOQ

	Design D6 Using Ringed Tries but Without FOQ

	Hash Tries
	Cell-Ids Refined
	Reading a Word from the Hash Trie
	Initial Hash Trie
	Search of a Word
	Insertion of a Word
	Sorting the Words by Frequency
	Design D7 Using a Hash Trie

	Related Work
	Open Source Projects
	Rigorous Description of Software Designs

	Evaluation
	Critique of Knuth's Solution
	Why is it this long?
	ÔM, Our Design Language

	Conclusion

