
Test Driven Development

Brian Nielsen
Arne Skou

bnielsen@cs.aau.dk
ask@cs.aau.dk

CISS

TDD Definifion
“Test-driven Development is a

programming practice that instructs
developers to write new code only if an

automated test has failed, and to
eliminate duplication. The goal of TDD is

clean code that works”
[Mansel&Husted: JUnit in Action]

CISS

TDD Definifion
“Test Driven Development is the craft of producing

automated tests for production code, and using
that process to drive design and programming

For every bit of functionality, you first develop a
test that specifies and validates what the code

will do.

You then produce exactly as much code as
necessary to pass the test. Then you refactor

(simplify and clarify) both production code and
test code”

[Agile Alliance]

CISS

Possible test processes

Specification Write Test
casesCode Impl.

Specification
Write Test

cases Code Impl.

Specification

Write Test
cases

Code Impl.

Test Last (waterfall)

Test Concurrently
(independently)

Test First

CISS

What is TDD?
TDD is a technique whereby you write your test
cases before you write any implementation
code
Tests drive or dictate the code that is developed
An indication of “intent”

Tests provide a specification of “what” a piece of code
actually does
Thinking about testing is analysing what the system
should do!
Some might argue that “tests are part of the
documentation”

Mainly Unit Testing
Automated Regression Unit Testing

CISS

Requirements

Standards

Written specs
(iinformal, ncomplete, ambiguous)

Informal understanding
in developer’s mind

Customers

Domain
Experts

CISS

Automated Testing
“Code that isn’t tested doesn’t work”
“Code that isn’t regression tested suffers
from code rot (breaks eventually)”
“If it is not automated it is not done!”

“A unit testing framework enables
efficient and effective unit & regression
testing
Programmer Friendly

CISS

Regression testing
New code and changes to old code can
affect the rest of the code base

“Affect” sometimes means “break”

Regression = Relapsed to a less perfect
or developed state.
Regression testing: Check that code
has not regressed
Regression testing is required for a
stable, maintainable code base

CISS

Refactoring
Refactoring is a behavior preserving
transformation
Restructure, simplify, beautify
Refactoring is an excellent way to break
code.

CISS

Testing using xUnit

All tests
pass

Some tests
fail

Can’t think of
any more tests

Refactor code
tests [Pass]

Refactor code
tests [Fail]

Write Failed test

Fix code

CISS

Benefits?
Efficiency

Identify defects earlier
Identify cause more easily

Higher value of test effort
Producing a more reliable system
Improve quality of testing (maintain automated tests)
Minimization of schedule
Stable code base

Reducing Defect Injection
Small “fixes” have are 40 times more error prone than
new code => Fine grained tests + run tests
continuously

CISS

Benefits?
Better programmer Life

Can now work on your code with no fear;
No one wants to support a fragile system;

“We don’t touch that, it might break.”

With complete tests, code away:
Test fails, you *know* you broke something.
Tests pass, you didn’t.

Eases changes (XP embrace change):
addition of functionality
new requirements
refactoring

CISS

TDD Stages
In Extreme Programming Explored (The Green Book),
Bill Wake describes the test / code cycle:

1. Write a single test
2. Compile it. It shouldn’t compile because you’ve not

written the implementation code
3. Implement just enough code to get the test to compile
4. Run the test and see it fail
5. Implement just enough code to get the test to pass
6. Run the test and see it pass
7. Refactor for clarity and “once and only once”
8. Repeat

CISS

Development Cycle

add functionality

add a test

run the test

run the test

[Pass]

[Fail]

[Fail]

[Pass]
Development

continues

[Development stops]

CISS

TDD Example
Simple Light-Controller

Light controller toggles light on/off when
wire is touched

On Off

switch

switch

CISS

TDD Example

void testSwitch() {
s=new LightSwitch();
check(s!=NULL);
check(ON == s.switch());
check(OFF ==s.switch());
check(ON == s.switch());

}

• Writing test case first

• Run tests: (Fails: compilation errors)
• LightSwitch doesn’t exist

CISS

TDD Example

Class LightSwitch {
public enum LightState {ON, OFF} state;
public LightSwitch(){state=OFF;}

LightState switch(){
Return state;

}
}

• Write a first simple implementation

• Run Tests
• System Compiles
• Test still fails (passes first check)
• Switch not fully implemented

CISS

TDD Example

Class Class LightSwitchLightSwitch {{
public public enumenum LightStateLightState {ON, OFF} state;{ON, OFF} state;
public public LightSwitch(){stateLightSwitch(){state=OFF;}=OFF;}

LightStateLightState switch(){switch(){
if(stateif(state==OFF) state=ON;==OFF) state=ON;
if(stateif(state==ON) state=OFF;==ON) state=OFF;
return state;return state;

}}
}}

• Implement switch-method

• Run Test
• still fails (passes first two checks)
• Switch incorrect

CISS

TDD Example

Class LightSwitch {
public enum LightState {ON, OFF} state;
public LightSwitch(){state=OFF;}

public LightState switch(){
if(state==ON)

state=OFF;
else
state=ON;

return state;
}

}

• Rewrite switch-method (perhaps refactor)

• Run Tests: Test Passes

CISS

TDD Example
Light controller toggles light on/off when
wire is touched
New Requirement: When wire is held
the controller decrements the light level

Bright Dim1 Dim2 Off

switch

switch

dim dim

CISS

TDD Example

void void testSwitchtestSwitch() {() {
s=new s=new LightSwitchLightSwitch();();
check(scheck(s!=NULL);!=NULL);
check(ONcheck(ON == == s.switchs.switch());());
check(OFFcheck(OFF ====s.switchs.switch());());
check(ONcheck(ON == == s.switchs.switch());());

}}
void void testDimmertestDimmer(){(){
s=new s=new LightSwitchLightSwitch(); //initially off(); //initially off
check(s.getLevelcheck(s.getLevel()==0);()==0);
s.dims.dim(); //No effect when off(); //No effect when off
check(s.getLevelcheck(s.getLevel()==0);()==0);
s.switchs.switch(); //switch on: level is Max:3(); //switch on: level is Max:3
check(s.getLevelcheck(s.getLevel()==3);()==3);
s.dims.dim();();
check(s.getLevelcheck(s.getLevel()==2); //dimming works()==2); //dimming works
s.dims.dim();();
check(s.getLevelcheck(s.getLevel()==1);()==1);
s.dims.dim();();
check(s.getLevelcheck(s.getLevel()==1); //cannot dim more()==1); //cannot dim more

}}

• Add test case for new functionality

CISS

TDD Example

Class LightSwitch {
public enum LightState {ON, OFF} state;
public LightSwitch(){state=OFF;}
int level;
public int getLevel(){return level;}
public void dim(){
if(state==ON && level>1) level--;

}
public LightState switch(){

if(state==ON) { //changed code
state=ON;
level=0;

} else {
state=ON;
level=3;

}
return state;

}}

• Write Implementation

• Run Tests: testDim Passes, but testSwitch fail

CISS

TDD Example

Class LightSwitch {
public enum LightState {ON, OFF} state;
public LightSwitch(){state=OFF;}
int level;
public int getLevel(){return level;}
public void dim(){
if(state==ON && level>1) level--;

}
public LightState switch(){

if(state==ON) { //changed code
state=OFF;
level=0;

} else {
state=ON;
level=3;

}
return state;

}}

• Fix Error

• Run Tests: Both testSwitch and testDim passes

CISS

A Case Study
Device Drivers at IBM

• None experienced in TDD

[Williams, Maximilien, Vouk ’03]

CISS

Results

Approximately same productivity
Developers spend more time writing test cases, but
reduces time spent on (unpredictable) debugging
64.6 KLOC new code + 34 KLOC JUnit tests

“We belive that TDD aided us in producing a product that
more easily incorporated later changes”

40% reduction in defect
density (external test
team)
Identical severity
distribution

CISS

Background for TDD
Emerged from Agile and eXtreme
Programming (XP) methods
XP Practices

Incremental
Continuous Integration
Design Through Refactoring
Collective Ownership
Programmer Courage

Lightweight development process
K. Beck: “XP takes best practices and
turns all knobs up to 10!”

CISS

Books
test-driven development: A Practical Guide
Dave Astels
Prentice-Hall/Pearson Education, 2003
ISBN 0-13-101649-0

Reviewed BUG developers’ magazine, Nov/Dec 2003

Test-Driven Development: By Example
Kent Beck
Addison-Wesley, 2003
ISBN 0-321-14653-0

CISS

Resources (Books)

Refactoring: Improving the Design of
Existing Code

Martin Fowler
Addison-Wesley, 1999
ISBN 0-201-48567-2

CISS

References and links

S. Amber. Introduction to Test Driven
Development (TDD). www.agiledata.org
D. Jansen and H. Saiedian. Test-Driven
Development: Concepts, Taxonomy and Future
Direction. IEEE Computer September 2005
E. M. Maximilien and L. Williams. Assessing
Test-Driven Development at IBM. 25th

International Conference on Software
Engineering, 2003
K. Beck and E. Gama. Test infected:
Programmers love writing tests. Java Report,
3(7), July 1998
http://www.testdriven.com
http://www.junit.org

CISS

Summary
TDD

=
Test first

+
Automated (Unit) Testing

RED

GREEN

REFACTOR

GREEN

End

