
Burdy et al.: An overview of JML tools and applications 3

public class Purse {

final int MAX_BALANCE;

int balance;

//@ invariant 0 <= balance && balance <= MAX_BALANCE;

byte[] pin;

/*@ invariant pin != null && pin.length == 4

@ && (\forall int i; 0 <= i && i < 4;

@ 0 <= pin[i] && pin[i] <= 9);

@*/

/*@ requires amount >= 0;

@ assignable balance;

@ ensures balance == \old(balance) - amount

@ && \result == balance;

@ signals (PurseException) balance == \old(balance);

@*/

int debit(int amount) throws PurseException {

if (amount <= balance) { balance -= amount; return balance; }

else { throw new PurseException("overdrawn by " + amount); }

}

/*@ requires p != null && p.length >= 4;

@ assignable \nothing;

@ ensures \result <==> (\forall int i; 0 <= i && i < 4;

@ pin[i] == p[i]);

@*/

boolean checkPin(byte[] p) {

boolean res = true;

for (int i=0; i < 4; i++) { res = res && pin[i] == p[i]; }

return res;

}

/*@ requires 0 < mb && 0 <= b && b <= mb

@ && p != null && p.length == 4

@ && (\forall int i; 0 <= i && i < 4;

@ 0 <= p[i] && p[i] <= 9);

@ assignable MAX_BALANCE, balance, pin;

@ ensures MAX_BALANCE == mb && balance == b

@ && (\forall int i; 0 <= i && i < 4; p[i] == pin[i]);

@*/

Purse(int mb, int b, byte[] p) {

MAX_BALANCE = mb; balance = b; pin = (byte[]) p.clone();

}

}

Fig. 1. Example JML specification

ning the Java code and testing for violations of JML as-
sertions. Such runtime assertion checks are accomplished
by using the JML compiler jmlc (Section 4.1).

Given that one often wants to do runtime assertion
checking in the testing phase, there is also a jmlunit tool
(Section 4.2), which combines runtime assertion checking
with unit testing.

3.2 Static checking and verification

More ambitious than testing if the code satisfies the
specifications at runtime is verifying that the code sat-
isfies its specification statically. This can give more as-
surance in the correctness of code as it establishes the
correctness for all possible execution paths, whereas run-
time assertion checking is limited by the execution paths
exercised by the test suite being used. Of course, correct-
ness of a program with respect to a given specification is
not decidable in general. Any verification tool must trade

pmateti
Rectangle

pmateti
Highlight

pmateti
Typewriter
1

pmateti
Typewriter
2

pmateti
Typewriter
3

pmateti
Typewriter
4

pmateti
Typewriter
5


