
An answer.pdf for 2018 Fall Midsem. Scored 98%.
24 October 2018
Midterm CEG-4420 Host Computer Security

Start time: 3:00 pm
End time: 4:40 pm

Part 1

1. (6 min) Size: Size is a utility program which tells the sizes of the segments in a program file. For
instance, the /bin/ls in the question has about 126,379 bytes of code (text) and 4,728 bytes of constants
and global variable (data).

If /bin/ls changes size, it is possible that it has been replaced with a trojaned version, so the statement is
true as long as the change in size was not an update done by a system administrator.

2. (5 min) sha512sum is a program which computes a cryptographic SHA-512 has of a file. A hash
takes an object of some (often arbitrary) length and produces a small fixed size output based on the
input. If a file is modified, it is extremely unlikely to produce the same hash as the original. SHA-512 is
a cryptographic hash which means that is is (as far as we know) computationally infeasible to
systematically modify a file to produce the same hash as the original file.

An executable file like /bin/ls which should not change on a regular basis producing a different hash
indicates that someone modified the file and would indicate a compromise.

3. (4 min) Rootkit A rootkit is a set of programs which can be used by an attacker to make it easier to
regain access to a compromised system and hide his activities from the system’s owners. Rootkits may
contain trojans of common system programs such as login (to give a backdoor), ls (to hide files), ps, (to
hide processes).

The statement as written is not true. A rootkit is a collection of programs used by an intruder to hide
damage from the system administrator.

4. (6 min) /proc/1 Proc is a pseudo-filesystem created by the kernel which allows access to information
on processes by creating a directory structure to represent each process. The /1 indicates the directory is
for the process with PID 1, aka the init process.

The statement is basically true. The command used to start the init process will be stored in the file
/proc/1/cmdline. Reading this file will give the path telling which program was invoked as init.

5. suid (10 min) Suid (set user ID) root means that a program will run as if it were owned by root
regardless of who invoked the program. This is different than normal programs where they will run
with the same permissions as the user who invoked them. Suid programs are a common target for
exploitation because a successful exploit will allow an attacker to utilize the root privileges of the suid
processes.

/bin/mount
/bin/umount

Mount and umount are used to add and remove filesystems. They are suid because adding and
removing filesystems is a privileged task. A normal user should not have the ability to mount
filesystems over say /bin as they could replace important system programs with their own trojaned
versions.

/usr/bin/sudo => sudo allows a user to execute commands as if they were another user. This is only
possible if sudo is a suid binary as, otherwise, users could only execute commands as themselves.
Because sudo is suid, administrators must be careful what privileged commands they allow users to run
by editing /etc/sudoers.

/bin/cat => Cat is a program which concatenates files and writes them to standard output. This should
definitely not be suid because it would allow any user to view any file on the system including sensitive
ones like /etc/shadow. Users should only be able to read files which they have the proper privileges to
read.

Part 2

1.

(i) (5 min)

E7: BIOS/UEFI finds the boot device
E8: OS boot loader is discovered
E3: OS boot loader reads the kernel image
E4: OS boot loader invokes the kernel
E1: Root volume (initrd) is mounted by the kernel
E2: Init process is created
E5: Several more processes are started
E6: Several processes (the currently running ones) are started
E9: All file volumes are unmounted Reboot
E10: Init is terminated

(ii) (6 min)
E9: All file volumes are unmounted. When shutting down the computer, the kernel must unmount all
file volumes to ensure that all data is flushed to from memory buffers into the filesystems and that all
file operations are completed before powering down. This prevents filesystem damage or lost data that
could result from incomplete or interrupted file operations.

Security may be breeched if filesystems are modified in an bad way by an attacker. This could include
things like overwriting the boot partition to make the system load a bad kernel the next time it is
started.

2.
Note: I ran this on 64-bit Ubuntu 16.04

Output of strace

(i) (10 min)

The shellcode did not execute as the code resulted in a segmentation fault instead of a shell. A message
“*** stack smashing detected ***: ./testsc terminated” was printed when I ran the program (see the
writev syscall). This message was generated by the stack canary check which is included by default in
modern compilers to help detect stack overflows. The stack canary works by putting a number on the
stack and then checking if the number changed right before returning from a function. See the below
disassembly of testsc’s main function. The xor rax,[fs:0x28] line is checking the canary value and the
call sym.imp.__stack_chk_fail is what inovkes the function that produced the error message when the
canary did not match.

(ii) (5 min)
System calls explained
open() is used to give a process access to a file. The kernel will place put a reference to the file in the
process’s file table and return a file descriptor (index in the table) for the process to use to reference
that particular file.

mmap() is used to allocate pages of virtual memory for a process. If a process tries to access memory
which has not been allocated to it via mmap, a segmentation fault will occur.

3. (5 min)
The byte 0x00 is also known as the nul character. The nul character is used to indicate the end of a
string in C. AlephOne is trying to exploit C functions like strcpy() which copies data from a source
buffer to a destination buffer until the it encounters a nul character in the source buffer. The weakness
of this function is that it looks copies until a nul character instead of copying a set number of bytes.
This allows for buffer overflows when the source buffer is made larger than the destination one. If a
string has nuls in the middle of it, only the first part of the string will be copied meaning that some
essential parts of the shellcode would be lost. 0x00 can be avoided by changing which assembly
language instructions are used. For example instead of saying “mov eax, 0x00” (which contains 0x00),
you can use “xor eax, eax” which has the same result but does not require any 0x00 bytes.

4. (20 min)

The Cs stand for a call instruction. The function being called is S, which is the code to set up and
invoke execve(“/bin/sh”). The arrow 3 represents that the call invokes S. The call is used in order to set
up a stack frame for the shellcode to push arguments to. The arrow is a relative call based on the size of
the shellcode because the exact location of the shellcode in memory is not known at the time of writing
the exploit.

5. (25 min)

Initial splint run – 12 warnings

Warning 1: “exploit3.c:27:23 Function malloc expects arg 1 to be size_t gets int: bsize”

The line in question is shown below. The warning exists because int and size_t may not be equivalent
types. In C, the size of int is system dependent and may vary from one processor to another.

To fix this, I added a typecast to bsize which explicitly tells the compiler that I want to coerce bsize
into a size_t.

Warning 2: “exploit3.c:51:3 Return value (type int) ignored: system(“/bin/sh”);”

Because system() makes a system call, it returns an int which contains the return value of the system
call. This value can be checked to ensure that the system call did not result in an error. It is good coding
practice to check all errors to avoid problems that could result from assuming that a function ran with
no error.

Before modification:

After modification: I used an if statement to check the return value for an error

Final output of splint after modification: 10 warnings

